TMC5130-HBS-KIT HW & FW Manual

Hardware Version V1.00 | Document Revision V1.10 • 2021-08-19

TMC5130-HBS-KIT is an open source reference design for a Home Bus (HBS) connected stepper motor actuator. It is a stepper motor driver for voltages up to +24V and ca. 290mA of RMS phase current. StealthChop[™] allows for ultra-silent stepper motor operation. It is controlled and powered via HBS with a single cable and comes with an onboard temperature sensor.

Applications

- Blinds/flap Control
- Building Automation
- Vending Machines

- Locks
- Simplified Block Diagram

©2021 TRINAMIC Motion Control GmbH & Co. KG, Hamburg, Germany Terms of delivery and rights to technical change reserved. Download newest version at: www.trinamic.com

Features

- Single axis stepper motor driver and motion controller
- StealthChop[™] ultra-silent chopper
- StallGuard2[™] sensorless homing
- Up to 290mA phase RMS current
- Supply Voltage up to 24V
- Home Bus communication interface & TMCL[™] communication protocol
- Onboard temperature sensor
- Open source hardware and firmware
- Kit: + Home Bus master board
- Kit: + stepper motor

Contents

1	Order Code	S	4
2	Module Fea	i tures ed Products	5 5
	2.2 Open S	ource	6
3	Mechanical	Information	7
	3.1 Homeb	bus Slave	7
	3.2 Homeb	ous Master	8
4	Connectors	and LEDs	9
	4.1 Homeb	Neter Connector	9
	4.1.1	Home Rus Interface Connector	9
	4.1.2	SWD Programming Pads	9 Q
	4.1.5		10
	4.2 Homeb	us Master	10
	4.2.1	Power and RS485 Connector	10
	4.2.2	Homebus Connector	11
	4.2.3	SWD Programming Connector	11
-	Eirmwara D	Description	17
5		Protocol	12 12
	5.1.1	Binary Command Format	12
	5.1.2	Binary Reply Format	13
	5.1.3	TMCL via Homebus	13
	5.2 Suppor	ted TMCL Commands	14
	5.2.1	ROR (Rotate Right)	14
	5.2.2	ROL (Rotate Left)	15
	5.2.3	MST (Motor Stop)	16
	5.2.4	MVP (Move to Position)	17
	5.2.5	SAP (Set Axis Parameter)	19
	5.2.6	GAP (Get Axis Parameter)	20
	5.2.7	RFS (Reference Search)	21
	5.2.8	GIO (Get Input)	23
	5.2.9	Axis Parameters	25
	5.2.10	Reference Search	31
	5.3 USING t	ne TMCL-IDE with the Reference Design	ゴI つつ
	5.4 Whung		52
6	Operationa	l Ratings and Characteristics	33
	6.1 Absolut	te Maximum Ratings	33
	6.2 Electric	al Characteristics (Ambient Temperature 25°C)	33
	6.3 I/O Rati	ings (Ambient Temperature 25°C)	33
	6.4 Other F	Requirements	34
7	Figures Ind	ex	35
Q	Tables Inde		26
0		^	סכ
9	Supplemen	tal Directives	37
	9.1 Produc	er Information	37
	9.2 Copyrig	ght	37

9.3 9.4 9.5 9.6 9.7	Trademark Designations and Symbols Image: Control of the symbols Target User Image: Control of the symbols Disclaimer: Life Support Systems Image: Control of the symbols Disclaimer: Intended Use Image: Control of the symbols Collateral Documents & Tools Image: Control of the symbols	37 37 37 37 38
10 Rev 10.7 10.2 10.3	/ision History 1 Hardware Revision 1 2 Firmware Revision 1 3 Document Revision 1	39 39 39 39

1 Order Codes

Order Code	Description	Size (LxWxH)	
TMC5130-HBS-KIT	 Home Bus Reference Design Kit: Home Bus connected stepper motor controller & driver Home Bus master module with mating connectors 2-wire JST-PH cable to connect master and slave (CABLE-PH02) QSH2818-32-07-006 NEMA 8 stepper motor with JST PH connector 	32x28x9 (mm)85x55x9 (mm)	

Table 1: Order codes

Figure 1: TMC5130-HBS-KIT Home Bus Reference Design Kit

2 Module Features

TMC5130-HBS-KIT is an open source reference design for a Home Bus (HBS) connected stepper motor actuator. It is a stepper motor driver for voltages up to +24V and ca. 290mA of RMS phase current. Stealth-Chop^M allows for ultra-silent stepper motor operation. It is controlled and powered via the Home BUs with a single two-wire connection and comes with an onboard temperature sensor. The kit also contains a Home Bus master modules for communication with a workstation or other higher level controller via RS485.

- Two-wire Home Bus interface for power **and** communication.
 - More information on the Home Bus standard is available in Maxim Integrated's Application Note 7224
- Supply Voltage up 24V
- Motor phase currents up to 290mA RMS / 400mA peak
- 2x LED indicators
- TMCL[™] -based firmware for configuration and permanent parameter storage
- StealthChop[™] ultra-silent stepper motor operation
- StallGuard2[™] sensorless homing
- Fully integrated SixPoint[™] motion controller for smooth and adaptable motion profiles and ramping
- Home Bus master module
- NEMA11 stepper motor

2.1 Featured Products

- TMC5130A-TA Fully integrated stepper motor driver and motion controller
- MAX22088GTG+ Home Bus Compliant Transceiver with Integrated Power Transfer
- MAX32660GTP+ Tiny, Ultra-Low-Power Arm Cortex-M4 Processor with FPU-Based Microcontroller (MCU) with 256KB Flash and 96KB SRAM
- MAX31875R0TZS+ Low-Power I2C Temperature Sensor in WLP Package
- MAX14775EATA+ ±65V Fault Protected 500Kbps/20Mbps Half-Duplex RS-485/RS-422 Transceivers
- MAXM15065AMB+ 4.5V to 60V, 300mA Step-Down uSLIC Power Module

2.2 Open Source

This is an Open Source project! The following data is available as Open Source for download and own use:

- Module design, layout, manufacturing data, 3D files: https://www.trinamic.com/
- Complete firmware sources: https://github.com/trinamic/

Figure 2: Home Bus stepper motor reference design (Home Bus slave node)

Figure 3: Home Bus master reference design

©2021 TRINAMIC Motion Control GmbH & Co. KG, Hamburg, Germany Terms of delivery and rights to technical change reserved. Download newest version at www.trinamic.com

3 Mechanical Information

3.1 Homebus Slave

The Homebus Slave is a single FR4 board.

The size of the Homebus Slave is approximately 32mm x 28mm with two M3 mounting holes. The maximum component height including PCB is approximately 9mm (without mating connectors).

Figure 4: Homebus Slave top view and mechanical dimensions

Figure 5: Homebus Slave bottom view

3.2 Homebus Master

The Homebus Master is a single FR4 board.

The size of the Homebus master is approximately 85mm x 55mm with four M3 mounting holes. The maximum component height including PCB is approximately 9mm (without mating connectors).

Figure 6: Homebus Master top view and mechanical dimensions

Figure 7: Homebus Master bottom view

4 Connectors and LEDs

4.1 Homebus Slave

Connector types, pitch, and more information on the I/O signals and pin-out can be derived directly from the original/latest CAD and manufacturing data available as Open Source on GitHub:

https://github.com/trinamic/TMC5130-HBS-REF

4.1.1 Motor Connector

The motor connector is highlighted in blue in figure 4. The interface connector is a 4-pin JST PH Series connector.

- Part number: JST B4B-PH-K-S (JST PH series, 4pins, 2mm pitch)
- Connector housing: JST PHR-4
- Contacts: JST SPH-002T-P0.5S

Pin #	Signal / Label	Description	Range [Units]	Units
1	OA1	Motor phase A1	0+VS	V
2	OA2	Motor phase A2	0+VS	V
З	OB1	Motor phase B1	0+VS	V
4	OB2	Motor phase B2	0+VS	V

4.1.2 Home Bus Interface Connector

The interface connector is highlighted in red in figure 4. The interface connector is a 2-pin JST PH Series connector.

- Part number: JST B2B-PH-K-S (JST PH series, 2pins, 2mm pitch)
- Connector housing: JST PHR-2
- Contacts: JST SPH-002T-P0.5S

Pin #	Signal / Label	Description	Range [Units]	Units
1	H+	Home Bus positive rail max voltage	+28	V
2	H-	Home Bus negative/inverted rail min- imum voltage	-6	V

4.1.3 SWD Programming Pads

The bottom side of the board contains the SWD programming pads for the internal MCU of the module.

- RST MCU reset
- +3.3V VCCIO
- SDIO SWD IO line (at 3.3V level)

- SCLK SWD clock line (at 3.3V level)
- GND Ground

4.1.4 LEDs

There are two LEDs on the top side of the board. The connected signal names are written in the top side copper layer.

Signal / Label	Description	Color
3.3V	Indicator that the board is powered and the digital rail is up	Blue
DRV_EN	Indicator that the driver output bridges are enabled (on) or disabled (off)	Red

Figure 8: TMC5130-HBS-KIT LED indicators

4.2 Homebus Master

4.2.1 Power and RS485 Connector

The power and interface connector provides the supply power input and an RS485 interface.

Pin #	Signal / Label	Description	Range	
1	+VS	Power Supply	max. 24V	
2	RS485+	RS485 signal (non iverted)	+VS	
3	RS485-	RS485 signal (inverted)		
4	GND	Power and signal ground		

4.2.2 Homebus Connector

The homebus connector provides power and data signals for connecting the Homebus Slave module.

Pin #	Signal / Label	Description
1	H+	Home Bus positive rail
2 H- Ho		Home Bus negative/inverted rail

4.2.3 SWD Programming Connector

The programming connector provides the SWD programming pads for the internal MCU of the module.

- RST MCU reset
- +3.3V VCCIO
- SDIO SWD IO line (at 3.3V level)
- SCLK SWD clock line (at 3.3V level)
- GND Ground

5 Firmware Description

5.1 TMCL Protocol

The Homebus Slave firmware implements the TMCL protocol described in sections 5.1.1 and 5.1.2. It supports the direct mode of TMCL with a subset of the TMCL commands. In direct mode the TMCL communication follows a strict master/slave principle. A host computer (PC or microcontroller) acting as the interface bus master sends a command to the module. The TMCL interpreter on the module then interprets this command and does the necessary tasks for executing the specified command. Right after the command has been executed the module sends back a reply back to the bus master. The master must not send the next command before getting the reply of the last command.

5.1.1 Binary Command Format

The TMCL protocol follows a simple request/reply principle. The request is also called command, as it contains the command to be executed.

Every command has a mnemonic and a binary representation. When commands are sent from a host to a module, the binary format has to be used. Every command consists of a one-byte command field, a one-byte type field, a one-byte motor/bank field and a four-byte value field. So the binary representation of a command always has seven bytes. When a command is to be sent, it has to be enclosed by an address byte at the beginning and a checksum byte at the end. Thus the complete request consists of nine bytes.

The binary command format is as follows:

TMCL Command Format			
Bytes	Meaning		
1 Module address			
1	Command number		
1	Type number		
1	Motor or Bank number		
4	Value (MSB first!)		
1 Checksum			

Table 7: TMCL Command Format

The checksum is calculated by adding up all bytes (including the module address byte) using 8-bit addition as shown in this C code example:

```
unsigned char i, Checksum;
unsigned char Command[9];
//Set the Command array to the desired command
Checksum = Command[0];
for(i=1; i<8; i++)
7 Checksum+=Command[i];
9 Command[8]=Checksum; //insert checksum as last byte of the command
//Now, send it to the module
```


5.1.2 Binary Reply Format

Every time a command has been sent to a module, the module sends a reply. The reply is also 9 byte long and formated is as follows:

TMCL Reply Format			
Bytes	Bytes Meaning		
1	1 Reply address		
1 Module address			
1 Status (e.g. 100 means no error)			
1	1 Command number		
4 Value (MSB first!)			
1 Checksum			

Table 8: TMCL Reply Format

The reply contains a status code. The status code can have one of the following values:

TMCL Status Codes			
Code	ode Meaning		
100	Successfully executed, no error		
1	1 Wrong checksum		
2	Invalid command		
3	Wrong type		
4 Invalid value			
5 Configuration EEPROM locked			
6 Command not available			

Table 9: TMCL Status Codes

5.1.3 TMCL via Homebus

As the Homebus interface needs a DC-free encoding, simply sending the nine bytes of a TMCL datagram via the Homebus interface will not work. To implement this kind of encoding, two bytes are needed to represent each data byte. Thus a TMCL command or a TMCL reply sent via Homebus will need 18 bytes. This kind of encoding and decoding is also done in the TMC5130-HBS-KIT firmware. To learn more about Homebus data encoding please see Maxim Application Note 7224 and Maxim Application Note 7226. Also take a look at the firmware source code to see how encoding and decoding is done (it is based on these two application notes).

5.2 Supported TMCL Commands

This section gives a short overview of the available TMCL commands.

5.2.1 ROR (Rotate Right)

The motor is instructed to rotate with a specified velocity in right direction (increasing the position counter). The velocity is given in microsteps per second (pulse per second [pps]).

Internal function: Velocity mode is selected. Then, the velocity value is transferred to the target velocity (axis parameter #2).

Related commands: ROL, MST, SAP, GAP.

Mnemonic: ROR <axis>, <velocity>

Binary Representation				
Instruction Type Motor/Bank Value				
1	0	0	-21474836482147583647	

Reply in Direct Mode		
Status Value		
100 - OK	don't care	

Example

Rotate right motor 0, velocity 500. *Mnemonic:* ROR 0, 500.

Binary Form of ROR 0, 500		
Field	Value	
Target address	01 _h	
Instruction number	01 _h	
Туре	00 _h	
Motor/Bank	00 _h	
Value (Byte 3)	00 _h	
Value (Byte 2)	00 _h	
Value (Byte 1)	01 _h	
Value (Byte 0)	F4 _h	
Checksum	F7 _h	

5.2.2 ROL (Rotate Left)

The motor is instructed to rotate with a specified velocity in left direction (decreasing the position counter). The velocity is given in microsteps per second (pulse per second [pps]).

Internal function: Velocity mode is selected. Then, the velocity value is transferred to the target velocity (axis parameter #2).

Related commands: ROR, MST, SAP, GAP.

Mnemonic: ROL <axis>, <velocity>

Binary Representation			
Instruction Type Motor/Bank Value			
2	0	0	-21474836482147583647

Reply in Direct Mode		
Status Value		
100 - OK don't care		

Example

Rotate left motor 0, velocity 500. *Mnemonic:* ROL 0, 500.

Binary Form of ROL 0, 500		
Field	Value	
Target address	01 _h	
Instruction number	02 _h	
Туре	00 _h	
Motor/Bank	00 _h	
Value (Byte 3)	00 _h	
Value (Byte 2)	00 _h	
Value (Byte 1)	01 _h	
Value (Byte 0)	F4 _h	
Checksum	F8 _h	

5.2.3 MST (Motor Stop)

The MST command stops the motor using a soft stop.

Internal function: The velocity mode is selected. Then, the target velocity (axis parameter #2) is set to zero.

Related commands: ROR, ROL, SAP, GAP.

Mnemonic: MST <axis>

Binary Representation				
Instruction Type Motor/Bank Value				
3	0	0	0	

Reply in Direct Mode		
Status Value		
100 - OK don't care		

Example

Stop motor 0. *Mnemonic:* MST 0.

Binary Form of MST 0		
Field	Value	
Target address	01 _h	
Instruction number	03 _h	
Туре	00 _h	
Motor/Bank	00 _h	
Value (Byte 3)	00 _h	
Value (Byte 2)	00 _h	
Value (Byte 1)	00 _h	
Value (Byte 0)	00 _h	
Checksum	04 _h	

5.2.4 MVP (Move to Position)

With this command the motor will be instructed to move to a specified relative or absolute position. It will use the acceleration/deceleration ramp and the positioning speed programmed into the unit. This command is non-blocking - that is, a reply will be sent immediately after command interpretation and initialization of the motion controller. Further commands may follow without waiting for the motor reaching its end position. The maximum velocity and acceleration as well as other ramp parameters are defined by the appropriate axis parameters. For a list of these parameters please refer to section 5.2.9. The range of the MVP command is 32 bit signed (-2147483648...2147483647). Positioning can be interrupted using MST, ROL or ROR commands.

Two operation types are available:

- Moving to an absolute position in the range from -2147483648...2147483647 (-2^{31} ... 2^{31} 1).
- Starting a relative movement by means of an offset to the actual position. In this case, the new resulting position value must not exceed the above mentioned limits, too.
- NoteThe distance between the actual position and the new position must not be more
than 2147483647 $(2^{31} 1)$ position steps . Otherwise the motor will run in the op-
posite direction in order to take the shorter distance (caused by 32 bit overflow).

Internal function: Position mode is selected and the new position value is transferred to axis parameter #0 (target position).

Related commands: SAP, GAP, MST.

Mnemonic: MVP <ABS | REL>, <axis>, <position | offset>

Binary Representation				
Instruction Type Motor/Bank Value				
Λ	0 – ABS – absolute	0	<position></position>	
-	1 – REL – relative	0	<offset></offset>	

Reply in Direct Mode		
Status Value		
100 - OK don't care		

Example Move motor 0 to position 90000. *Mnemonic:* MVP ABS, 0, 90000

Binary Form of MVP ABS, 0, 90000		
Field	Value	
Target address	01 _h	
Instruction number	04 _h	
Туре	00 _h	
Motor/Bank	00 _h	
Value (Byte 3)	00 _h	
Value (Byte 2)	01 _h	
Value (Byte 1)	5F _h	
Value (Byte 0)	90 _h	
Checksum	F5 _h	

Example

Move motor 0 from current position 10000 steps backward. *Mnemonic:* MVP REL, 0, -10000

Binary Form of MVP REL, 0, -10000		
Field	Value	
Target address	01 _h	
Instruction number	04 _h	
Туре	01 _h	
Motor/Bank	00 _h	
Value (Byte 3)	FF _h	
Value (Byte 2)	FF _h	
Value (Byte 1)	D8 _h	
Value (Byte 0)	F0 _h	
Checksum	CC _h	

5.2.5 SAP (Set Axis Parameter)

With this command most of the motion control parameters of the module can be specified. The settings will be stored in SRAM and therefore are volatile. That is, information will be lost after power off.

1 *Info* For a table with parameters and values which can be used together with this command please refer to section 5.2.9.

Internal function: The specified value is written to the axis parameter specified by the parameter number.

Related commands: GAP, AAP.

Mnemonic: SAP <parameter number>, <axis>, <value>

Binary representation

Binary Representation			
Instruction Type Motor/Bank Value			
5 see chapter 5.2.9		0	<value></value>

Reply in Direct Mode		
Status Value		
100 - OK	don't care	

Example Set the maximum positioning speed for motor 0 to 51200 pps. *Mnemonic:* SAP 4, 0, 51200.

Binary Form of SAP 4, 0, 51200	
Field	Value
Target address	01 _h
Instruction number	05 _h
Туре	04 _h
Motor/Bank	00 _h
Value (Byte 3)	00 _h
Value (Byte 2)	00 _h
Value (Byte 1)	C8 _h
Value (Byte 0)	00 _h
Checksum	D2 _h

5.2.6 GAP (Get Axis Parameter)

Most motion / driver related parameters of the TMC5130-HBS-KIT can be adjusted using e.g. the SAP command. With the GAP parameter they can be read out. In standalone mode the requested value is also transferred to the accumulator register for further processing purposes (such as conditional jumps). In direct mode the value read is only output in the value field of the reply, without affecting the accumulator.

1 Info For a table with parameters and values that can be used together with this command please refer to section 5.2.9.

Internal function: The specified value gets copied to the accumulator. **Related commands:** SAP, AAP.

Mnemonic: GAP <parameter number>, <axis>

Binary Representation			
Instruction Type Motor/Bank Value			
6 see chapter 5.2.9		0	<value></value>

Reply in Direct Mode		
Status Value		
100 - OK value read by this command		

Example

Get the actual position of motor 0. *Mnemonic:* GAP 1, 0.

Binary Form of GAP 1, 0		
Field	Value	
Target address	01 _h	
Instruction number	06 _h	
Туре	01 _h	
Motor/Bank	00 _h	
Value (Byte 3)	00 _h	
Value (Byte 2)	00 _h	
Value (Byte 1)	00 _h	
Value (Byte 0)	00 _h	
Checksum	08 _h	

5.2.7 RFS (Reference Search)

The TMC5130-HBS-KIT has a built-in reference search algorithm. The reference search algorithm provides different refrence search modes. This command starts or stops the built-in reference search algorithm. The status of the reference search can also be queried to see if it already has finished. (In a TMCL program it mostly is better to use the WAIT RFS command to wait for the end of a reference search.) Please see the appropriate parameters in the axis parameter table to configure the reference search algorithm to meet your needs (please see chapter 5.2.9).

Internal function: The internal reference search state machine is started or stoped, or its state is queried.

Related commands: SAP, GAP, WAIT.

Mnemonic: RFS <START|STOP|STATUS>, <motor>

Binary Representation			
Instruction	Type Motor/Bank Value		Value
	0 START — start reference search		
13	1 STOP — stop reference search	0	0 (don't care)
	2 STATUS — get status		

Reply in Direct Mode (RFS START or RFS STOP)		
Status Value		
100 - OK 0 (don't care)		

Reply in Direct Mode (RFS STATUS)		
Status	Value	
100 - OK	0	no ref. search active
	other values	reference search active

Example

Start reference search of motor 0. *Mnemonic:* RFS START, 0.

Binary Form of RFS START	
Field	Value
Target address	01 _h
Instruction number	0D _h
Туре	00 _h
Motor/Bank	00 _h
Value (Byte 3)	00 _h
Value (Byte 2)	00 _h
Value (Byte 1)	00 _h
Value (Byte 0)	00 _h
Checksum	0E _h

5.2.8 GIO (Get Input)

With this command the status of the available general purpose outputs of the module can be read. The function reads a digital or an analog input port. Digital lines will read as 0 or 1, while the ADC channels deliver their 12 bit result in the range of 0...4095. In standalone mode the requested value is copied to the accumulator register for further processing purposes such as conditional jumps. In direct mode the value is only output in the value field of the reply, without affecting the accumulator. The actual status of a digital output line can also be read.

Internal function: The state of the i/o line specified by the type parameter and the bank parameter is read.

Related commands: SIO.

Mnemonic: GIO <port number>, <bank number>

Binary Representation			
Instruction Type Motor/Bank Value			
15 <pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>			

Reply in Direct Mode		
Status Value		
100 - OK status of the port		

Example

Get the value of ADC channel 0. *Mnemonic:* GIO 0, 1.

Binary Form of GIO 0, 1						
Field	Value					
Target address	01 _h					
Instruction number	0F _h					
Туре	00 _h					
Motor/Bank	01 _h					
Value (Byte 3)	00 _h					
Value (Byte 2)	00 _h					
Value (Byte 1)	00 _h					
Value (Byte 0)	00 _h					
Checksum	11 _h					

Reply (Status=no error, Value=302)					
Field	Value				
Host address	02 _h				
Target address	01 _h				
Status	64 _h				
Instruction	0F _h				
Value (Byte 3)	00 _h				
Value (Byte 2)	00 _h				
Value (Byte 1)	01 _h				
Value (Byte 0)	2E _h				
Checksum	A5 _h				

Bank 1 – Analog Inputs

The analog input lines can be read back as digital or analog inputs at the same time. The analog values can be accessed in bank 1.

Analog Inputs in Bank 1							
Port	Description	Description Command					
9 - Temperature	Temperature	GIO 9, 1	[°C]				

5.2.9 Axis Parameters

Axis parameters are accessed with the GAP and SAP command. In the table below, the parameter supported by the TMC5130-HBS-KITare shown.

	Axis 0 Parameters of the TMC5130-HBS-KIT Module								
Number	Axis Parameter	Descriptio	n			Range [Units]	Access		
0	Target position	The desire	ed target pos	-2147483648 2147483647 [µsteps]	RW				
1	Actual position	The actua tor before be overwr	l position of overwriting ritten for refe	the motor. S it. Should ne erence positio	itop the mo- ormally only on setting.	-2147483648 2147483647 [µsteps]	RW		
2	Target speed	The desire position n	ed speed in ve node.	elocity mode.	Not valid in	-7999774 7999774 [pps]	RW		
3	Actual speed	The actua	l speed of the	-7999774 7999774 [pps]	R				
4	Maximum positioning speed	The max ramps.	imum speed	07999774 [pps]	RW				
5	Maximum acceleration	Maximum Accelerati mode.	acceleratio on and dece	1177629278 [pps ²]	RW				
6	Maximum current	Motor cu The maxir of the max The curre	rrent used y num value is ximum curre ent can be	0255	RW				
		815	8895	168175	248255				
		1623	96103	176183					
		2431	104111	184191					
		3239	112119	192199					
		4047	120127	200207					
		4855	128135	208215					
		5663	136143	216223					
		6471	144151	224231					
		7279 The most in cause mot	152159 mportant sett or damage.	232239 ing, as too hig	th values can				

Number	Axis Parameter	Description	Range [Units]	Access
7	Standby current	The current used when the motor is not run- ning. The maximum value is 255 which means 100% of the maximum current of the module. This value should be as low as possible so that the motor can cool down when it is not moving. Please see also parameter 214.	0255	RW
8	Position reached flag	This flag is always set when target position and actual position are equal.	0/1	R
10	Right limit switch state	The logical state of the right limit switch input.	0/1	R
11	Left limit switch state	The logical state of the left limit switch input.	0/1	R
12	Right limit switch disable	Deactivates the stop function of the right limit switch if set to 1.	0/1	RW
13	Left limit switch disable	Deactivates the stop function of the left limit switch if set to 1.	0/1	RW
14	Swap limit switches	Swap the left and right limit switches when set to 1.	0/1	RW
15	Acceleration A1	First acceleration between VSTART and V1 (in position mode only).	1177629278 [pps ²]	RW
16	Velocity V1	First acceleration / decelaration phase target ve- locizy (in position mode only). Setting this value to 0 turns off the first acceleration / decelera- tion phase, maximum acceleration (axis param- eter 5) and maximum decleration (axis parame- ter 17) are used only.	01000000 [pps]	RW
17	Maximum deceleration	Maximum deceleration in positioning ramps. Used to decelerate from maximum positiong speed (axis parameter 4) to velocity V1.	1177629278 [pps ²]	RW
18	Deceleration D1	Deceletation bewteen V1 and VSTOP (in posi- tioning mode only).	1177629278 [pps ²]	RW
19	Velocity VSTART	Motor start velocity (in position mode only). Do not set VSTART higher than VSTOP.	0249999 [pps]	RW
20	Velocity VSTOP	Motor stop velocity (in position mode only).	0249999 [pps]	RW
21	Ramp wait time	Defines the waiting time after ramping down to zero velocity before next movement or direc- tion inversion can start. Time range is 0 to 2 seconds. This setting avoids excess acceleration e.g. from VSTOP to -VSTART.	065535 [0.000032s]	RW
22	Speed threshold for CoolStep / fullstep	Speed threshold for de-activating CoolStep or switching to fullstep mode.	07999774 [pps]	RW

Number	Axis Parameter	Des	cription	Range [Units]	Access
23	Minimum speed for DcStep	Min	imum speed for switching to DcStep	07999774 [pps]	RW
24	Right limit switch polarity	Sett stat	ing this parameter to 1 inverts the logic e of the right limit switch input.	0/1	RW
25	Left limit switch polarity	Sett stat	ing this parameter to 1 inverts the logic e of the left limit switch input.	0/1	RW
26	Soft stop enable	Use swit	soft stop when motor is stopped by a limit ch.	0/1	RW
27	High speed chopper mode	Swit spe set	cch to other chopper mode when measured ed is higher than axis parameter 22 when to 1.	0/1	RW
28	High speed fullstep mode	Swit is hi	ch to fullstep mode when measured speed gher than axis parameter 22 when set ot 1.	0/1	RW
31	Power down ramp	Con pow tor pire jerk 15=	trols the number of clock cycles for motor ver down after a motion as soon as the mo- has stopped and the setting time has ex- d. The smooth transition avoids a motor upon power down. 0=instant power down, longest possible power down ramp.	015 [0.16384s]	RW
32	DcStep time	This for mize tor and tion ram	s setting controls the reference pulse width DcStep load measurement. It must be opti- ed for robust operation with maximum mo- torque. A higher value allows higher torque higher velocity, a lower value allows opera- down to a lower velocity as set by axis pa- eter #23.	01023	RW
33	DcStep StallGuard	This mod	setting controls stall detection in DcStep de. Increase for higher sensitivity.	0255	RW
140	Microstep resolution	$ \begin{array}{c} Micl \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ \end{array} $	rostep resolutions per full step: fullstep halfstep 4 microsteps 8 microsteps 16 microsteps 32 microsteps 64 microsteps 128 microsteps 256 microsteps	08	RW

Number	Axis Parameter	Description	Range [Units]	Access
167	Chopper off time (TOff)	The off time setting controls the minimum chopper frequency. An off time within the range of 5μ s to 20μ s will fit. Off time setting for constant t Off chopper:	015	RW
		$N_{CLK} = 12 + 32 * tOFF$ (Minimum is 64 clocks) Setting this parameter to zero completely dis- ables all driver transistors and the motor can free-wheel.		
168	SmartEnergy current minimum (SEIMIN)	Sets the lower motor current limit for CoolStep operation by scaling the maximum current (see axis parameter 6) value. Minimum motor current: $0 - \frac{1}{2}$ of CS $1 - \frac{1}{4}$ of CS	0/1	RW
169	SmartEnergy current down step	Sets the number of StallGuard2 readings above the upper threshold necessary for each current decrement of the motor current. Number of StallGuard2 measurements per decrement: Scaling: 03: 32, 8, 2, 1 0: slow decrement 3: fast decrement	03	RW
170	SmartEnergy hysteresis	Sets the distance between the lower and the upper threshold for StallGuard2 reading. Above the upper threshold the motor current becomes decreased. Hysteresis: $([AP172] + 1) * 32$ Upper StallGuard threshold: $([AP172] + 1) * 32$	015	RW
171	SmartEnergy current up step	Sets the current increment step. The current becomes incremented for each measured Stall- Guard2 value below the lower threshold see SmartEnergy hysteresis start). Current incre- ment step size: Scaling: 03: 1, 2, 4, 8 0: slow increment 3: fast increment / fast reaction to rising load	03	RW
172	SmartEnergy hysteresis start	The lower threshold for the StallGuard2 value (see SmartEnergy current up step). Setting this to 0 (default) turns off CoolStep.	015	RW
173	StallGuard2 filter enable	Enables the StallGuard2 filter for more preci- sion of the measurement. If set, reduces the measurement frequency to one measurement per four fullsteps. In most cases it is expedient to set the filtered mode before using CoolStep. Use the standard mode for step loss detection. 0 - standard mode 1 - filtered mode	0/1	RW

Number	Axis Parameter	Description	Range [Units]	Access
174	StallGuard2 threshold	This signed value controls StallGuard2 thresh- old level for stall output and sets the optimum measurement range for readout. A lower value gives a higher sensitivity. Zero is the starting value. A higher value makes StallGuard2 less sensitive and requires more torque to indicate a stall.	-64+63	RW
179	Vsense	Sense resistor voltage based current scaling. 0 - High current range: up to 1.4A RMS / 2A peak. 1 - Low current range: up to 0.7A RMS / 1A peak. Default value: 1. Please note: this parameter cannot be changed for hardware V1.2! The high current range is available for hardware V1.4 or higher only!	0/1	RW
180	SmartEnergy actual current	This status value provides the actual motor current setting as controlled by CoolStep. The value goes up to the CS value and down to the portion of CS as specified by SEIMIN. Actual motor current scaling factor: 031: 1/32, 2/32,32/32	031	R
181	Stop on stall	Below this speed motor will not be stopped. Above this speed motor will stop in case Stall- Guard2 load value reaches zero.	07999774 [pps]	RW
182	SmartEnergy threshold speed	Above this speed CoolStep becomes enabled.	07999774 [pps]	RW
186	PWM threshold speed	The StealthChop feature will be switched off when the actual velocity is higher than this value. It will be switched on when the actual velocity is below this value (and parameter #187 is greater than zero).	07999774 [pps]	RW
187	PWM gradient	Velocity dependent gradient for PWM ampli- tude (StealthChop). Setting this value to 0 turns off StealthChop.	015	RW
188	PWM amplitude	Maximum PWM amplitude when switching to StealthChop mode. Do not set too low. Values above 64 recommended.	0255	RW
189	PWM scale	Actual PWM amplitude scaler (255=maximum voltage). In voltage mode PWM, this value allows to detect a motor stall.	0255	R
191	PWM frequency	PWM frequency selection for StealthChop. 0 - f_{PWM} = 15.625kHz 1 - f_{PWM} = 23.426kHz 2 - f_{PWM} = 31.250kHz 3 - f_{PWM} = 39.024kHz	03	RW

Number	Axis Parameter	Descri	ption	Range [Units]	Access
192	PWM autoscale	PWM Chop. 0 - Us setting 1 - Ena	automatic amplitude scaling for Stealther er defined PWM amplitude. The current gs do not have any influence. able automatic current control.	01	RW
193	Reference search stall threshold	StallG	uard threshold used for reference search.	-6363	RW
194	Reference search speed	Veloci	ty (pps) used for reference search.	07999774 [pps]	RW
195	Reference search stall Vmin	Below during motor reache	this speed the motor will not be stopped g reference search. Above this speed the will stop in case StallGuard load value es zero during reference search.	07999774 [pps]	RW
196	End stop distance	This p the tw mand	arameter provides the distance between to end stops after executing the RFS com-	0 2147483647 [μsteps]	R
206	Actual load value	Reado detect	ut of the actual load value used for stall ion (StallGuard).	01023	R
207	Extended error flags	Error been cleare	flag that will be set when the motor has stopped by StallGuard. This flag will be d automatically after reading.	01	R
208	Motor driver error flags	A co Bit 0	mbination of the following values: StallGuard2 status (1: stall detected)	0255	R
		Bit 1	Overtemperature (1: driver is shut down due to overtemper- ature)		
		Bit 2	Overtemperature pre-warning (1: temperature threshold is exceeded)		
		Bit 3	Short to ground A (1: short condition detected, driver cur- rently shut down)		
		Bit 4	Short to ground B (1: short condition detected, driver cur- rently shut down)		
		Bit 5	Open load A (1: no chopper event has happened during the last period with constant coil polarity)		
		Bit 6	Open load B (1: no chopper event has happened during the last period with constant coil polarity)		
		Bit 7	Stand still (1: no step pulse occurred during the last 2^{20} clock cycles)		

Number	Axis Parameter	Description	Range [Units]	Access
214	Power down delay	Standstill period before the current will be ramped down to standby current. The stan- dard value is 0 which means that the current will be immediately ramped down to standby cur- rent using the power down ramp (see parame- ter #31) after the motor has stopped. The de- lay time is given in units of 10ms which means that for example a value of 200 results in a delay time of 2000ms.	0417 [10ms]	RW
251	Reverse shaft	Reverse the rotation direction of the motor shaft.	0/1	RW
255	Motor enable	Enable or disable the motor. 0: Motor disable 1: Motor enable (default)	0/1	RW

Table 10: All TMC5130-HBS-KIT Axis Parameters

5.2.10 Reference Search

The TMC5130-HBS-KIT slave module firmware also provides a built-in reference search routine. This reference search routines utilizes StallGuard[™] to find a hard stop. In order to be able to use this reference search algorithm, StallGuard[™] needs to be tuned first. This can be done with the help of the TMCL-IDE (CoolStep & StallGuard tool). When suitable speed and stall threshold values have been found, these values can be used for the reference search also. Use axis parameters #193, #194 and #195 to set the speed and StallGuard[™] threshold values to be used with reference search.

The reference search can be started using the RFS START command. The motor will then first move in positive direction until a hard stop has been found. Then, the motor will move in negative direction until the other hard stop has been found. This way the distance between the two hard stops is measured. Finally, the position counter will be set to zero at the hard stop found in negative direction. Axis parameter #196 then provides the maximum distance (in microsteps) for moving from the zero point in positive direction.

5.3 Using the TMCL-IDE with the Reference Design

The Homebus Master module firmware implements an interface converter between TMCL via RS485 and TMCL via Homebus. This enables the user to use the TMCL-IDE for getting started with the Reference design. First, connect the Homebus Master to your power supply (max. 24V) and to an RS485 interface (connected to your PC) Connect the TMC5130-HBS-KIT slave module to the master module. The TMCL-IDE can then communicate with the slave module via the master module. In the TMCL-IDE, choose the correct COM port (your RS485 interface) and use 9600 baud and RS485 module address 1 as shown in figure 9.

🕸 COM5 (Serial)1.3.0.2 - serial 🛛 🛛 💽						
Connection Timer TMCL-Log						
Baudrate: 96	• 00					
Search IDs from:	1 🔹 to: 1 🖨					
Reply ID:	2					
Progress:	100%					
Connect	Disconnect					

Figure 9: TMCL-IDE Connection Settings

The TMC5130-HBS-KIT reference design will be shown as a TMCM-0025 module by the TMCL-IDE. The different tools in the TMCL-IDE can be used to get the motor run and to read out the temperature sensor.

👗 TMCL-IDE 3.3.0.2 (2021-05-21)										-	σ×
Eile Tools Options Views Help											
									Ē.	⊻ 😫	D) / 👁
Connected devices ×					1	Telocity	mode @TMCN	4-0025 <1	st Axis> : C	OM5-Id 1	1.3.0
Denice V 3 Serial V 0 Serial V 0 Parameter calculator V 0 Action Mode Control mode V 0 Actor V 0 Actor	Direct mode @TMCM-0025 : TMCL Instruction Selector Instruction: 1 - ROF rotate r Type: 0 - sdont transe Motor: 0 - Motor 0 Value: Answer Second and a structure Position graph @TMCM-0025 <1st Common graph @TMCM-0025 <1st Targete h Targete h Targete h	COM5-L X ight • 0 ÷ 0 Axis> : COM5-Id osition (µsteps) osition (µsteps)	TMCM-0025 : COM5-Id 1 General Board Info Analog Inputs Temperature + S3	1.3.0.2 - tmcm_xml 36 <u>Boan</u>	Eme d website	Target velo	city 0 0.0 10 ² Actual velocity er	(pps) + 10 ³ y (pps)	Accelerat	0M5-ld 1	1.3.0 ≥
✓ Info display ■ Axis parameter display	240 000 120 000 0 44 s 45	Position mode	@TMCM-0025 <1st Axis> : CC	0M5-Id 11.3.0.2 - tools_ste	epper_posi	tion					
Ma CoolStep & StallGuard		Position contro	d.	Ramp parameters		0					
		Actual position	n: 0	Max. velocity [pps] Acceleration [pps ²]	32780						
		Target position Relative to:	Clear n: 512000 ¢ target position	Deceleration [pps ²] Start velocity [pps] Acceleration A1 [pps ²] Velocity V1 [pps] Deceleration D1 [pps ²] Stap velocity [ppr]	51160 25580 25600 25580						
		C Absolute	C Relative Stop	TZEROWAIT [0.000032s	j] (•					37 cmds/sec

Figure 10: The TMCL-IDE showing the TMC5130-HBS-KIT Reference Design

5.4 Writing own Firmware

You are free to write your own firmware for the Homebus Slave module. Flashing and debugging of the MCU can be done via the Serial Wire Debug interface (SWD). Please see section 4.1.3 and figure 5 for more about the SWD interface.

It is also possible to modify the firmware for the Homebus Master module (for example to create an automated demonstration).

6 Operational Ratings and Characteristics

6.1 Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
H+ to H-	-	-0.3	+28	V
H+ to GND	-	-0.3	+28	V
H- to GND	-	-6	+6	V
Onboard Supply voltage	+VS	+9	+28	V
Abs. max. RMS motor phase current	$I_{phase,RMS}$		300	mA
Working temperature	T_A	-10	+50	°C

NOTICE

Never exceed the absolute maximum ratings! Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

6.2 Electrical Characteristics (Ambient Temperature 25°C)

Parameter	Symbol	Min	Тур	Max	Unit
Onboard Supply voltage	+VS	+9		+24	V
Onboard Digitial Supply and IO voltage	+VCCIO		+3.3		V
Continuous RMS motor phase current	$I_{phase,RMS}$			290	mA

Table 12: Electrical Characteristics

6.3 I/O Ratings (Ambient Temperature 25°C)

Parameter	Symbol	Min	Тур	Max	Unit
SWD programming pads	VCCIO		3.3		V

Table 13: I/O ratings

¹This is the maximum current rating. This is not for continuous operation but depends on motor type, duty cycle, ambient temperature, and active/passive cooling measures.

²Working at high environmental temperatures may require additional cooling measures depending on duty cycle and maximum current/power draw.

6.4 Other Requirements

Specifications	Description or Value
Cooling	Free air or heat sink mounted with isolating gap pad
Working environment	Avoid dust, water, oil mist and corrosive gases, no condensation, no frosting

Table 14: Other Requirements and Characteristics

7 Figures Index

1	TMC5130-HBS-KIT Home Bus Refer- ence Design Kit	4	6	Homebus Master top view and me- chanical dimensions	8
2	Home Bus stepper motor reference	~	7	Homebus Master bottom view	8
R	design (Home Bus slave node)	6 6	8	TMC5130-HBS-KIT LED indicators	10
4	Homebus Slave top view and mechan-	0	9	TMCL-IDE Connection Settings	32
5	ical dimensions	7 7	10	The TMCL-IDE showing the TMC5130- HBS-KIT Reference Design	32
-					

8 Tables Index

1	Order codes	4
7	TMCL Command Format	12
8	TMCL Reply Format	13
9	TMCL Status Codes	13
10	All TMC5130-HBS-KIT Axis Parameters	31
12	Electrical Characteristics	33

13	I/O ratings	33
14	Other Requirements and Characteris-	
	tics	34
15	Hardware Revision	39
16	Firmware Revision	39
17	Document Revision	39

9 Supplemental Directives

9.1 **Producer Information**

9.2 Copyright

TRINAMIC owns the content of this user manual in its entirety, including but not limited to pictures, logos, trademarks, and resources. © Copyright 2021 TRINAMIC. All rights reserved. Electronically published by TRINAMIC, Germany.

Redistribution of sources or derived formats (for example, Portable Document Format or Hypertext Markup Language) must retain the above copyright notice, and the complete data sheet, user manual, and documentation of this product including associated application notes; and a reference to other available product-related documentation.

9.3 Trademark Designations and Symbols

Trademark designations and symbols used in this documentation indicate that a product or feature is owned and registered as trademark and/or patent either by TRINAMIC or by other manufacturers, whose products are used or referred to in combination with TRINAMIC's products and TRINAMIC's product documentation.

This HW & FW Manual is a non-commercial publication that seeks to provide concise scientific and technical user information to the target user. Thus, trademark designations and symbols are only entered in the Short Spec of this document that introduces the product at a quick glance. The trademark designation /symbol is also entered when the product or feature name occurs for the first time in the document. All trademarks and brand names used are property of their respective owners.

9.4 Target User

The documentation provided here, is for programmers and engineers only, who are equipped with the necessary skills and have been trained to work with this type of product.

The Target User knows how to responsibly make use of this product without causing harm to himself or others, and without causing damage to systems or devices, in which the user incorporates the product.

9.5 Disclaimer: Life Support Systems

TRINAMIC Motion Control GmbH & Co. KG does not authorize or warrant any of its products for use in life support systems, without the specific written consent of TRINAMIC Motion Control GmbH & Co. KG.

Life support systems are equipment intended to support or sustain life, and whose failure to perform, when properly used in accordance with instructions provided, can be reasonably expected to result in personal injury or death.

Information given in this document is believed to be accurate and reliable. However, no responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties which may result from its use. Specifications are subject to change without notice.

9.6 Disclaimer: Intended Use

The data specified in this user manual is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose

or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given.

In particular, this also applies to the stated possible applications or areas of applications of the product. TRINAMIC products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (safety-Critical Applications) without TRINAMIC's specific written consent.

TRINAMIC products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by TRINAMIC. TRINAMIC conveys no patent, copyright, mask work right or other trade mark right to this product. TRINAMIC assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

9.7 Collateral Documents & Tools

This product documentation is related and/or associated with additional tool kits, firmware and other items, as provided on the product page at: www.trinamic.com.

10 Revision History

10.1 Hardware Revision

Version	Date	Author	Description
1.00	02.05.2021	SK	Launch release.

Table 15: Hardware Revision

10.2 Firmware Revision

Version	Date	Author	Description
1.00	12.07.2021	ОК	Launch release.

Table 16: Firmware Revision

10.3 Document Revision

Version	Date	Author	Description
1.00	06.08.2021	SK/OK	Launch release.
1.10	19.08.2021	SK	HBS connector pin numbers corrected.

Table 17: Document Revision

