

AN53: TMC4671 PI Tuning

Document Revision V1.3.1 • 2020-Dec-17

本用逐步介如何使用 USB-2-RTMI (RTMI) 一步一步调试 TMC4671。通讯转换器是采用基于 FTDI FT4222H 高速 USB 转 SPI 桥路。采用 USB 供电带有一个小巧的 10 引脚接头和 TMC4671-EVAL 的 RTMI 接口引脚相同,且具有相同的引分配可以在 TMC4671 估板上找到。TMCL- IDE提供软件工具用于调试不同控制环路。因此,RTMI 是调试,监控和系统配置的最简便的方式。

Contents

1	Items used	2
2	USB-2-RTMI Driver Installation	4
3	Basic Configuration	4
4	Tuning 4.1 Overview	4 4 6
5	Tuning of the current loop5.1Torque/Flux Tuning Tool (Open Loop)5.2Step Response Toolbox (Closed Loop)5.3Bode Plot	6 14 16
6	Tuning of the velocity loop	19
7	Tuning of the position loop7.1Step Response Tool	23 23 26
8	Summary	28
9	Revision History	29

©2020 TRINAMIC Motion Control GmbH & Co. KG, Hamburg, Germany Download newest version at: www.trinamic.com

1 Items used

- 直流无刷伺服电机, (e.g. QBL4208-61-04-013-1024-AT)
- TMC4671-EVAL-Kit
- USB-2-RTMI
 - 注意: USB-2-RTMI_V20 包括电隔离, 仅适用于 TMC4671-LA
- TMCL-IDE (3.0.24)
- 电源(24V)
- Micro-USB通讯线缆
- Mini-USB通讯线缆

Figure 1: TMC4671-EVAL套件和BLDC机

Figure 2: USB-2-RTMI

Figure 3: 带电隔离的 USB-2-RTMI v20

2 USB-2-RTMI Driver Installation

参考 USB-2-RTMI指南 完成驱动安装。

3 Basic Configuration

在使用调试工具之前,必须先配置 TMC4671 (例如,使用TMC4671 Wizard)。

Figure 4: TMCL-IDE: TMC4671 Wizard - 配置代码

在完成基本的参数配置之后,可以保存为C代码或.tpc脚本

- 在摘要中(Summary)选择ABN编码器
- 使用*Export Script* 导出脚本

4 Tuning

4.1 Overview

TMC4671支持三种主要的操作模式,它们需要进行PI配置:

- current/torque mode 电流/力矩模式
- velocity mode 速度模式
- position mode 位置模式

每个模式都可以通过PI对每个环路进行调试。如下图概述:

Figure 6: PI tuning tools

Figure 5: TMC4671 control loops

这是一个串联的环路,因此外环依赖内环的调优。例如,在使用速度环之前必须先配置电流环。为每个PI控制器的调整提供了软件工具。在TMCL-IDE中,可以通过Tuning Group访问这些调试工具调整工具包括:

- Biquad tuning: 用于过率每个循环的目标值
- Torque/Flux tuning: 通过开环阶跃响应识别PI参数
- Step response: 适应所有控制回路的闭环阶跃响应

5 / 29

- Bode plot: 所有环路的波特图
- IC scope: 监控, 读出寄存器值与PWM频率

4.2 Limits

- 在使用调试工具之前,建议将输出电压设置为最大(设置 PIDOUT_UQ_UD_LIMITS = 32767 置)。对于步进来说默认值就可以了。
- •将 PID_TORQUE_FLUX_LIMITS 设置为应用中所允许的最大电流数值。
- 设置 PID_POSITION_LIMIT_HIGH = 2 147400 000
- 设置 PID_POSITION_LIMIT_LOW = -2 147400 000

號 Limits	Limits @TMC4671-EVAL <1st Axis> (Landungsbru. 🖂				
Limits	Limits				
Adr	Name	Value			
0x5D	PIDOUT_UQ_UD_LIMITS	32 767 🔹			
0x5E	PID_TORQUE_FLUX_LIMITS	4000			
0x5F	PID_ACCELERATION_LIMIT	2 147 400 000			
0x60	PID_VELOCITY_LIMIT	10 000 🖨			
0x61	PID_POSITION_LIMIT_LOW	-2 147 400 000 🜩			
0x62	PID_POSITION_LIMIT_HIGH	2 147 400 000 🜩			
	Reload Exp	oort Import			

Figure 7: TMCL-IDE: TMC4671 限制

5 Tuning of the current loop

电流环由两个控制环路组成:一用于扭矩(电流),另一用于磁通(电流)。都可以使用RTMI工具在 Torque Flux / Tuning 工具和 Step response 工具调整。Torque转矩/Flux磁通工具在开环模式下确定Pl参数。

5.1 Torque/Flux Tuning Tool (Open Loop)

Torque Flux调试工具会通过识别电机参数自动确定Pl参数的起始值。在此过程中,设置电压阶跃并评估电流阶 跃响应.只有磁通量电流被激发到最小/在这个调整阶段没有运动。建议使用25kHz的PWM频率以获得最好的识 别结果.

- 1. TMC4671-EVAL连接到RTMI和PC。
- 2. 打开 "Torque/Flux Tuning Tool"。
- 3. 单击 "Start"按钮开始整定
- 4. 给出了电流对电压阶跃的响应,以及系统的辨识结果

Figure 8: 配置和开始阶跃响应

Figure 9: 第一步反应

- 5. 检查和手动调整Y范围,以获得更好的视图
- 6. 单击"Start"按钮重新识别系统,如果电机匹配一致,将会给出更好的识别结果
- 7. 如果需要,调整所需要的电脑显示窗口。在大多数情况下,默认设置将提供良好的结果。-动态阶跃响应 被涵盖在识别区(虚线框内)
 - 动态阶跃响应应覆盖在识别区域(虚线框)中

Figure 10: 调整 Y 范围

Figure 11: 阶跃响应: 识别区域好

• 在图 12 阶跃响应没有完全涵盖.识别区域太小。

Figure 12: 阶跃响应:标识区域太小

• 在图 13 中,标识区域太大

Figure 13: 阶跃响应: 识别区域太大

- 8. 将识别出的PI值写入当前控制器
 - 使用以下按钮将 PI 值更新到电流控制器

- 注意:对于非常高的值标识 I-parameter显示为0. 在这种情况下,需要手动设置I参数 (如.设置 18000)。
- •用PI控制框确认新的 PI 值.必须使用 Reload 按钮更新值。

🔛 PI control @USB-2-RTMI [Aα] <				
Current control				
Adr	Name	Value		
0,456	PID_TORQUE_I	12488		
0230	PID_TORQUE_P	632 🖨		
0.45.4	PID_FLUX_I	12 488 🜲		
0X34	PID_FLUX_P	632 🗘		
Velocity	Velocity control			
Adr	Name	Value		
0.50	PID_VELOCITY_I	0 🖨		
0,00	PID_VELOCITY_P	0 📮		
Positio	n control			
Adr	Name	Value		
OVEA	PID_POSITION_I	0		
UX5A	PID_POSITION_P	0 🗣		
Reload Export Import				

Figure 14: PI Parameter

5.2 Step Response Toolbox (Closed Loop)

在前一步中,力矩/磁通电流环的PI参数是在开环模式下被识别到的.现在,阶跃响应工具将用于分析闭环行为。

1. 打开 Step response toolbox

Figure 15: step response toolbox

- 2. 配置电流控制的磁通电流设置
 - 目标值/Target value: 0x64 PID_FLUX_TARGET
 - •测量值/Measurement 1: 0x69 PID_FLUX_ACTUAL
 - 采样频率/Sampling rate: PWM
 - 下一步骤

 - 确定最终的磁通量 flux target current 目标值(这里数值4000)
 - 使用 Start 按钮启动阶跃响应step response
- 3. 实际电流和目标电流显示出来

4. 降低采样率以获得更好的效果

- 5. 通过修改不同的 P 和 I 优化性能
- 6. 从步骤 2 开始重复,修改 PID_TORQUE_TARGET, PID_TORQUE_ACTUAL。

5.3 Bode Plot

波特图工具用于确认电流环动态性能。

- 1. 打开 Bode Plot
- 2. 选择 1: torque control loop
- 3. 开始 measurement 通过单击 Start 按钮 (其他设置保持默认值)
- 4. 对比的例子:下面 2 个测量显示调节和没有调节使用默认 PI 参数下的波特图.
- 5. 默认 PI 数

🚻 PI co	ntrol @USB-2-RTMI	[Aα] < Χ
Current	t control	
Adr	Name	Value
0×56	PID_TORQUE_I	256 💂
0230	PID_TORQUE_P	256 🜩
0.45.4	PID_FLUX_I	256 🜲
0x54	PID_FLUX_P	256 🗘
Velocity	/ control	
Adr	Name	Value
0~50	PID_VELOCITY_I	10 🖨
0,00	PID_VELOCITY_P	400 🖨
Positio	n control	
Adr	Name	Value
0×54	PID_POSITION_I	0 💂
UXJA	PID_POSITION_P	100 🖨
Reload Export Import		

Figure 16: PI 参数

Figure 17: 默认 PI 的波特图

6. 调整 PI 参数

Figure 18: PI 参数

Figure 19: 调整过PI之后的波特图

7. 调谐PI后的控制系统具有较高的截止频率,因此具有较高的动态性能

6 Tuning of the velocity loop

这个章节介绍速度环调节.前提条件是电流环已经被调节完成。为了调整速度环 PI 参数,请使用 step response tool (closed loop)闭环阶跃响应工具

- 1. 对于以下步骤, PHI_E_SELECTION (0x52) 不应设置为 phi_e_openloop。手动设置或通过 TMC4671 Wizard 进行正确配置。
- 2. 为了方便速度单位确认. 在 *Selectors* toolbox 里的 VELOCITY_SELECTION (0x50) 需要从 phi_e_selection 设置为 phi_m_abn。

III Selectors @USB-2-RTMI [Aα] <1st motor of 1> : SPI4-Id 1 ⊠				
Selectors				
Adr	Name	Value		
0x52 PHI_E_SELECTION		phi_e_abn 🗸		
	VELOCITY_SELECTION	phi_m_abn 🗸		
0,50	VELOCITY_METER_SELECTION	default 🔹		
0x51	POSITION_SELECTION	phi_e selected via PHI_E_SELECTION ↓		
	MODE_MOTION	torque_mode 🔹		
	MODE_RAMP	no velocity ramping 🔹		
0x63	MODE_FF	disabled 🗸		
	MODE_PID_SMPL	0		
	MODE_PID_TYPE	parallel PI 🗸		
	ADC_I0_SELECT	ADCSD_I0_RAW (sigma delta ADC)		
	ADC_I1_SELECT	ADCSD_I1_RAW (sigma delta ADC)		
0x0A	ADC_I_UX_SELECT	UX = ADC_I0 (default)		
	ADC_I_V_SELECT	V = ADC_I2		
	ADC_I_WY_SELECT	WY = ADC_I1		
Reload Export Import				

Figure 20: Selectors: Velociy Unit 选择 - 速度单位

- phi_m: 机械速度显示和计算的单位是RPM (每分钟转数)
- phi_e: 电气速度显示和计算的单位是电周期

3. 设置速度环的 PI 参数

开始时设置一个比较低的 P数值; set I = 0

- 0x58: PID_VELOCITY_I = 0
- 0x58: PID_VELOCITY_P = 100

PI co	ntrol @USB-2-RTMI	[Αα] <.	
Current	t control		
Adr	Name	Value	
	PID_TORQUE_I	12 858 🜲	
0X56	PID_TORQUE_P	596 🜲	
	PID_FLUX_I	12 858 🜲	
0x54	PID_FLUX_P	596 🜲	
Velocity control			
0x58	PID_VELOCITY_I	0	
	PID_VELOCITY_P	100 🖨	
Positio	n control		
Adr	Name	Value	
	PID_POSITION_I	0	
0x5A	PID_POSITION_P	0	
	Reload Exp	ort Import	

Figure 21: PI 数值

- 4. 打开 Step Response tool box
- 5. 使用阶跃响应的实例配置
- 6. 单击 Start 按钮开始阶跃响应

Figure 22: PID_VELOCITY_P = 100

7. 逐渐增加 PID_VELOCITY_P, 直到实际速度 (PID_VELOCITY_ACTUAL) 达到 50-75% 目标速度 (PID_VELOCITY_TARGET)

Figure 23: PID_VELOCITY_P = 300

Figure 24: PID_VELOCITY_P = 500

8. 增加PID_VELOCIT_I 数值直到实际速度达到目标速度

Figure 25: PID_VELOCITY_I = 10

🔠 Selectors @USB-2-RTMI [Aα] <1st motor of 1> : SPI4-Id 1				
Selector	Selectors			
Adr	Name	Value		
0x52	PHI_E_SELECTION	phi_e_abn 🛛 🗸		
	VELOCITY_SELECTION	phi_m_abn		
0x50	VELOCITY_METER_SELECTION	default 🔸		
0x51	POSITION_SELECTION	phi_m_abn 🛛 🗸		
	MODE_MOTION	velocity_mode		
	MODE_RAMP	no velocity ramping		
0x63	MODE_FF	disabled 🗸		
	MODE_PID_SMPL	0		
	MODE_PID_TYPE	parallel PI 🔹		
	ADC_I0_SELECT	ADCSD_I0_RAW (sigma delta ADC)		
	ADC_I1_SELECT	ADCSD_I1_RAW (sigma delta ADC)		
0x0A	ADC_I_UX_SELECT	UX = ADC_I0 (default)		
	ADC_I_V_SELECT	V = ADC_I2		
	ADC_I_WY_SELECT	WY = ADC_11		
	Reload Export Import			

Figure 26: Selectors: Position unit

7 Tuning of the position loop

本章节介绍位置环调试,在使用位置环之前电流环和速度环需要先被配置好,使用阶跃响应工具来调试,然后使用开发板套装的MCU板 Landungsbruecke 用于提升动态性能和精度。

7.1 Step Response Tool

- 1. 将 POSITION_SELECTION 设置为 *phi_m_abn* 因此电机的一圈脉冲数为 65535 counts
- 2. 设置 PI 位置控制器的初始值
 - PID_POSITION_I = 0 (对于大多数设置,建议将此设置为0)
 - PID_POSITION_P = 10

🚻 PI control @USB-2-RTMI [Aα] < 🖂			
Current control			
Adr	Name	Value	
0,45.6	PID_TORQUE_I	12 858 🜲	
0230	PID_TORQUE_P	596 🗘	
0.54	PID_FLUX_I	12 858 🗘	
0X54	PID_FLUX_P	596 🗘	
Velocity	/ control		
Adr	Name	Value	
0250	PID_VELOCITY_I	10 🖨	
0000	PID_VELOCITY_P	500 🜲	
Position	Position control		
Adr	Name	Value	
0×54	PID_POSITION_I	0 ≑	
	PID_POSITION_P	10 ≑	
Reload Export Import			

Figure 27: PI parameter

- 3. 打开 step response tool
- 4. 单击 Start 按钮开始阶跃响应。电机会以 end value 值来回运动. 这里是 1 转
- 5. PID_POSITION_P = 10 时电机不运动。

Figure 28: PID_POSITION_P = 10

6. 增加比列数值P: PID_POSITION_P = 50

Figure 29: PID_POSITION_P = 50

7. 增大比例参数 P 值: PID_POSITION_P = 100

Figure 30: PID_POSITION_P = 100

8. 调整后的 PI 配置。

Figure 31: PI parameter

7.2 Motion Controller

开发板套装上的MUC板Landungsbrücke带有梯形坡型发生器可以和TMC4671-EVAL一起使用。TMC4671芯 片并不集成运动控制功能.

- 1. 通过 Mini USB 将MUC板 Landungsbruecke 连接到电脑
- 2. 在 Landungsbruecke 对话框 (USB-2-RTMI不可用) 中打开位置模式工具b箱
- 3. 使能速度控制曲线和加速度限制

osition control		Ramp settings	
Actual pos.	658000	Max velocity [rpm]	4000 🗘
Target pos.	655350 position	Accel.[rpm/s]	2000 🗧

- 4. 在位置控制工具框 position mode toolbox 控制电机转 10 圈
 - 清零位置数值 Clear the position
 - 设置目标位置 Target pos. = 655350
 - 单击 absolute 按钮开始电机运动

Figure 32: Movement with ramp

6. 增大减速度

osition cont	rol	Ramp settings
Actual pos.	655424 💲	Max velocity [rpm] 4000 🗘
Target pos.	655350 🗘	Accel.[rpm/s] 10 000 🗘

Figure 33: Movement with ramp

7. 用运动控制重复 10 圈 同时增大减速度参数, 也可以同时调整PI参数:

Position graph @USB-2-RTMI [Aα] <1st motor of 1> : SPI17-Id 1	23
700 000 659 152	
630 000 -	
560 000 -	
490.000 - PID_POSITION_ACTUAL PID_POSITION_TARGET	
420 000 -	
350 000 -	►
280 000 -	
210 000 -	
140 000 -	
70 000 -	
0 48 s 49 s 50 s 51 s 52 s 53 s 54	s "

8. 在增加运动控制功能之后调整 PI 配置

PI co	ntrol @TMC467 <mark>1</mark> -EV	AL [A 🔀
Current	control	
Adr	Name	Value
0.50	PID_TORQUE_I	12 858 🗘
0220	PID_TORQUE_P	596 🗘
	PID_FLUX_I	12 858 🗘
0X54	PID_FLUX_P	596 🗘
Adr	Name	Value
0x58	PID_VELOCITY_P	10 -
Position	n control	
Adr	Name	Value
0	PID_POSITION_I	0
UXDA	PID_POSITION_P	1 000 🗘
	Reload Exp	ort Import

Figure 34: PI parameter

9. 通过Export option 选型保存PI配置

8 Summary

RTMI 通讯接口为 TMC4671 芯片提供了一个强大的选项来调试芯片.快速实时接入芯片,可以用来调试和监控 每个环路。TMCL-IDE为系统开发提供了现成的软件工具。 关于更多 TMC4671 和如何使用的问题,请参考 TMC4671数据表。

9 Revision History

Version	Date	Author	Description
V1.0	25.04.2019	JPX	Inital version
v1.1	03.05.2019	ED, JPX	refinement
v1.2	24.06.2019	JPX	changed header, changed PID_POSITION_LIMIT_X values
v1.2.1	14.01.2020	JPX	CN version
v1.2.2	05.02.2020	GW, JPX	rework translation
v1.3.1	17.12.2020	JPX	RTMI_20, limits graph, clarification on 6.1

Table 1: Document Revision

