
POWER DRIVER FOR STEPPER MOTORS  INTEGRATED CIRCUITS 
 

 
 
TRINAMIC Motion Control GmbH & Co. KG  
Hamburg, Germany 

TMC429 & TMC26x Getting Started: 
Motion Control via Step/Direction 
 
 
 
 
 
 

 
 
 
 

Table of Contents 
1 Preliminary Note ........................................................................................................................................................... 1 
2 Hardware Architecture Outline ................................................................................................................................. 2 
3 Source Code Examples and Software Architecture ............................................................................................ 2 
4 Initialization of the TMC26x ...................................................................................................................................... 3 
5 Initialization of the TMC429 ...................................................................................................................................... 4 
5.1 TMC429 Configuration RAM – for SPI Stepper Driver Only .............................................................................. 4 
5.2 TMC429 Configuration Step/Direction Interface & Timing ............................................................................... 4 
5.3 TMC429 Step/Direction Timing – Set clk2_div in Global Parameter Register ............................................. 5 
5.4 Parameterizing Individual Stepper Motors for Motion ..................................................................................... 7 
5.5 Running a Motor ........................................................................................................................................................ 10 
6 Summary ....................................................................................................................................................................... 11 
7 Disclaimer ..................................................................................................................................................................... 11 
8 Revision History .......................................................................................................................................................... 11 
8.1 Document Revision .................................................................................................................................................... 11 
9 References .................................................................................................................................................................... 11 
 

1 Preliminary Note 
For explaining how to initialize a TMC429 together with a TMC26x the stepRocker module TMCM-1110 
is used as actual example. C source code examples are freely available for this module for practical 
tests (www.steprocker.com).  
  

Valid for TMC260, TMC261, and TMC262 

Here, TMC26x represents TMC262, TMC261, or TMC260 because they behave identical from the register 
communication point of view.  
 
This application note describes how to initialize a TMC429 together with a TMC26x with basic parameters 
to run a stepper motor.  

 
Additional application notes are available for more advanced parameterization of the TMC26x stepper 
motor driver and for parameterization of stallGuard™ and coolStep™.  

http://www.steprocker.com/


Application Note 016 (V1.02 / 2012-AUG-02)      2 

 

 
www.trinamic.com 

2 Hardware Architecture Outline 
From the configuration point of view, the TMC429 and TMC262 of the stepRocker have the 
architecture outlined in Figure 1. The motion control of the TMC262 takes place via step/direction by 
the TMC429. Both, the TMC429 and the TMC262 are parameterized via SPI by the microcontroller.  
 
 

STP

DIR

CSn

SCK

SDI

SDO

TMC262

nSCS2_S3

nSCS3_D3

nSCS_S_S2

SDI_S_D2

SDO_S_S1

SCK_S_D1

nSCS_C

SCK_C

SDI_C

SDOZ_C

MOSI_1
MISO_1

SCK_1

TMC429

nSCS_429

CSN_262

CLKCLK_TMC

 

Figure 1 SPI and step/dir wiring scheme for TMC429 with TMC262 on stepRocker module 

 

3 Source Code Examples and Software Architecture 
The complete firmware of the stepRocker (www.steprocker.com) is available as C source code 
example on www.trinamic.com from the stepRocker page via a link to stepRocker™ open TMCL 
Library (github).  
 
The main program is stepRocker.c calling all necessary initializations.  
 
Please refer the HTML documentation generated from source code with doxygen concerning details 
of firmware architecture source code.  
 

  

http://www.steprocker.com/
http://www.trinamic.com/
http://www.trinamic.com/index.php?option=com_content&view=article&id=541&Itemid=439
https://github.com/trinamic/stepRocker-Library
https://github.com/trinamic/stepRocker-Library


Application Note 016 (V1.02 / 2012-AUG-02)      3 

 

 
www.trinamic.com 

4 Initialization of the TMC26x 
For configuration, the TMC26x has five control registers: DRVCTRL (Driver Control), CHOPCONF 
(Chopper Configuration), SMARTEN (Smart Energy), SGCSCONF (stallGuard2, Current Scale), and 
DRVCONF (driver configurations).  

Note: - Smart Energy is an early term for coolStep.  
 - An application note concerning optimal chopper configuration is available. For getting 

started a default configuration as given here is sufficient to start a motor running.  
 - An application note concerning the parameterization of stallGuard2 and coolStep is also 

available. For getting started the stallGuard2 and coolStep features will not be used. This 
is proposed to be done later.   

 

LIST OF IMPORTANT CONTROL REGISTERS: 

DRVCTRL:  driver control parameter, here SDOFF=0 (default)  step-direction = ON 
CHOPCONF: chopper configuration register 
SMARTEN: coolStep. Leave untouched for getting started 
SGCSCONF:  stallGuard2. Ignored for getting started, but setting current scale is required 
DRVCONF: basic driver configurations switches 
 

TMC26X REGISTER CONFIGURATION EXAMPLE 

Register/ 

Bit 

DRVCTRL 

(SDOFF=1) 

DRVCTRL 

(SDOFF=0) 

CHOPCONF 

 

SMARTEN 

 

SGCSCONF DRVCONF 

19 0 0 1 1 1 1 

18 0 0 0 0 1 1 

17 PHA - 0 1 0 1 

16 CA7 - TBL1=1 0 SFILT=1 TST=0 

15 CA6 - TBL0=0 SEIMIN=0 - SLPH1=1 

14 CA5 - CHM=0 SEDN1=0 SGT6=0 SLPH0=1 

13 CA4 - RNDTF=0 SEDN0=0 SGT5=0 SLPL1=1 

12 CA3 - HDEC1=0 - SGT4=0 SLPL0=1 

11 CA2 - HDEC0=0 SEMAX3=0 SGT3=0 - 

10 CA1 - HEND3=0 SEMAX2=0 SGT2=1 DISS2G=0 

9 CA0 INTPOL=0 HEND2=0 SEMAX1=0 SGT1=0 TS2G1=0 

8 PHB DEDGE=0 HEND1=1 SEMAX0=0 SGT0=1 TS2G0=0 

7 CB7 - HEND0=0 - - SDOFF=0 

6 CB6 - HSTRT2=0 SEUP1=0 - VSENSE=1 

5 CB5 - HSTRT1=1 SEUP0=0 - RDSEL1=0 

4 CB4 - HSTRT0=1 - CS4=0 RDSEL0=0 

3 CB3 MRES3=0 TOFF3=0 SEMIN3=0 CS3=0 - 

2 CB2 MRES2=0 TOFF2=0 SEMIN2=0 CS2=1 - 

1 CB1 MRES1=0 TOFF1=0 SEMIN1=0 CS1=0 - 

0 CB0 MRES0=0 TOFF0=1 SEMIN0=0 CS0=1 - 

  Table 4.1 TMC26x register configuration table example 

SPI DATAGRAMS TO WRITE THE TMC26X REGISTER CONFIGURATION GIVEN IN THE EXAMPLE 

DRVCTRL  = 0x00000; // set interpolation = OFF, micro step resolution = 256x 
CHOPCONF  = 0x90131;  // set TBL=3, CHM=0, RNDTF=0, TOFF=1 
SMARTEN = 0xA0000; // disable smart energy function (coolStep) 
SGCSCONF = 0xD0505;  // set CS=0x05 that is 0x5/0x1F = 5/31 = 16% of max. current 
DRVCONF = 0xEF040; // set driver configuration & step/direction control 
 

The initialization of the driver is handled by the routine TMC26x.c: void InitMotorDrivers(void);  

Within the C source code example, the TMC26x control bits are stored within a data record that 
holds all control bits. The access is handled in a way that one can read back the actual settings from 
that data record. This is because the TMC26x allows reading back status information but written 
configuration bits are write only and cannot be read back.  



Application Note 016 (V1.02 / 2012-AUG-02)      4 

 

 
www.trinamic.com 

5 Initialization of the TMC429 

5.1 TMC429 Configuration RAM – for SPI Stepper Driver Only 
This application note describes how to control a TMC26x via step-direction signals. For step/direction 
control the TMC429 configuration RAM is unused and the internal sine wave look-up table (SinLUT) 
of the TMC26x driver is used instead. So, there is no need for initialization of the TMC429 
configuration RAM.   

5.2 TMC429 Configuration Step/Direction Interface & Timing 
ACTIVATING THE STEP/DIRECTION INTERFACE 
The step/direction interface of the TMC429 is activated by setting the ENable StepDirection control bit 
EN_SD = 1 of the TMC429 configuration register named if_configuration_429.  
 

TIMING OF THE STEP/DIRECTION INTERFACE 
The timing of the step/direction interface of the TMC429 is programmed via the nibble clk2_div [3… 
0]. This are the bits [11… 9] of the stepper motor global parameter register.  
 
The programming of the timing is intended for use of external step/direction power stages. For local 
communication the timing needs to be programmed to the fastest setting that is clk2_div = 0000.  

5.2.1 if_configuration_429 (JDX=%0100) and Step/Direction Timing via 
CLK2_DIV 

 
The register if_configuration_429 is the interface configuration register for the TMC429. This register 
is used for 

- configuration of the additional reference inputs,  

- de-multiplexed interrupt output,  

- step/direction interface, and for  

- association of the position compare output signal to one stepper motor.  
 

Register/ Bit if_configuration_429  Function 

0 INV_REF = 0 Invert polarity of reference switches (common polarity for 
all reference switches. 

1 SDO_INT = 1 Map internal non-multiplexed interrupt status to 
nINT_SDO_C (needs SDOZ_C as SDO_C for read back 
information from the TMC429 to the micro controller); with 
SDO_INT='1' the nINT_SDO_C is a non-multiplexed nINT 
output to the micro controller 

2 STEP_HALT = 0 Toggle on each step pulse (this halfs the step frequency, 
both pulse edges represent steps); this function can be used 
for the TMC262; STEP_HALF reduces the required step pulse 
bandwidth and is use full if one used e.g. low-bandwidth 
opto-couples; 

3 INV_STP = 0 Invert step pulse polarity; this is for adaption of the step 
polarity to external diver stages 

4 INV_DIR = 0 Invert step pulse polarity; this is for adaption to external 
diver stages; alternatively, this can be used as a shaft bit to 
adjust the direction of motion for a motor, but do not use 
this as a direction bit because it has no effect on the 
internal handling of signs (x_actual, v_actual, …) 

5 EN_SD = 1 ENable StepDirection. Important Hint: The Step Pulse Timing 
(length) must be compatible with step frequency; the Step 
Pulse Timing is determined by the 4 LSBs of CLK2_DIV for 
when step/direction mode is selected by ED_SD='1'; 



Application Note 016 (V1.02 / 2012-AUG-02)      5 

 

 
www.trinamic.com 

Register/ Bit if_configuration_429  Function 

6 POS_COMP_SEL_0 = 0 Select one motor out of three motors (%00, %01, %10) for 
the position compare function output of the TMC429 named 
poscmp. 

7 POS_COMP_SEL_1 = 0 

8 EN_REFR = 1 Enable new TMC429 reference inputs REFR1, REFR2, REFR3. 
EN_REFR=0 is the default. This is important because the 
REFRx input have internal pull-up resistors and this might 
cause trouble if these in-out are not-connected (for the 
SSOP16 these REFRx cannot be connected). 

Table 5.1 Example of if_configuration_429 interface configuration register setting for TMC429 

 

SPI DATAGRAMS TO WRITE THE TMC26X REGISTER CONFIGURATION GIVEN IN THE EXAMPLE:   

if_configuration_429 = 0x680122;  // write JDX=4 with SDO_INT=1, EN_SD=1, EN_REFR=1  
 

The initialization of the TMC429 is handled by the routine TMC429.c : void Init429(void);  

 

5.3 TMC429 Step/Direction Timing – Set clk2_div in Global 
Parameter Register 

The step/direction mode is enabled while the ENable StepDirection control bit EN_SD of the 
if_configuration_429 register is set to 1.  

The timing of the step/direction interface is controlled by the four LSBs [3… 0] of the clk2_div of the 
global parameter register.  

The clk2_div [3… 0] is named stpdiv_429.  For a given clock frequency fCLK [unit: MHz] of the TMC429, 
the length tSTEP [unit: µs] of a step pulse is  
 

tSTEP [µs] = 16 * ( 1 + stpdiv_429 ) / fCLK [MHz].  
 
For a clock frequency fCLK [MHz] of 16MHz the step pulse length can be programmed by stpdiv_429 
in integer multiple of 1 µs.  

The stpdiv_429 must be set that it is compatible to the upper step frequency fSTEP = 1 / tSTEP that 
is used.  

The first step pulse after a change of direction is delayed by tDIR2STP that is equal to tSTEP to avoid 
setup time violations of the step/direction power stage.  
 

Note: 
- The maximum step pulse frequency is fSTEP_MAX [MHz] = fCLK [MHz] / 32.  
- For a clock frequency fCLK [MHz] = 16MHz the maximal possible step pulse frequency fSTEP_MAX is 

500kHz.  
- For a clock frequency fCLK [MHz] = 32MHz the maximal step pulse frequency fSTEP_MAX is 1MHz.  

 
 

STP

DIR

tSTEP

tDIR2STP = tSTEP

tSTEP

tDIR2STP = tSTEP

 

Figure 2: TMC429 Step/direction timing (EN_SD='1' & STEP_HALF='0') 



Application Note 016 (V1.02 / 2012-AUG-02)      6 

 

 
www.trinamic.com 

For SD_EN = 1 the clk2_div [3… 0] is named stpdiv_429 within the TMC429 datasheet (available on 
www.trinamic.com). In step/direction mode the other control bits of the stepper motor global 
parameter register are ignored. For setting the fastest step/direction timing write 0 in the stepper 
motor global parameter register with 
 

stepper_motor_global_parameter_register = 0x7E000000; // clk2_div = O resp. stpdiv_429 = 0 
 

This initialization of the TMC429 is also handled by the routine TMC429.c : void Init429(void);  

 

Generally:  
For short wire link between TMC429 and TMC26x of the step/direction signals (e.g. on TMCM-1110 
stepRocker board) one can set the shortest tSTEP be setting stpdiv_429 = 0.  

 

EXCERPT OF STEPPER MOTOR GLOBAL PARAMETER REGISTER 

Register/ Bit 
Stepper motor global 
parameter register 

Function 

23   

22   

21 mot1r For SD_EN = 1 of in if_configuration_429 this control bit 
is ignored. 

20 refmux For SD_EN = 1 of in if_configuration_429 this control bit 
is ignored. 

19   

18   

17   

16 
continuous_update 

For SD_EN = 1 of in if_configuration_429 this control bit 
is ignored. 

15 

clk2_div [7…4] 
For SD_EN = 1 of in if_configuration_429 this part of the 
register is ignored. 

14 

13 

12 

11 

clk2_div [3…0] = 0 
For SD_EN = 1 of in if_configuration_429 this defines the 
timing of the step/direction interface; setting to O for 
fastest timing. 

10 

9 

8 

7 
csCommonIndividual 

For SD_EN=1 of in if_configuration_429 this part of the 
register is ignored 

6 

polarities 
Polarities of the SPI signals for the SPI stepper motor 
driver chain. 
Not relevant for step/direction mode of TMC429 

5 

4 

3 

2 

1 
LSDM = 00, 01, 10 

Last stepper motor driver.  
Not relevant for step/direction mode of TMC429 0 

Table 5.2 Example of stepper motor global parameter register for TMC429 step/direction timing 

  

http://www.trinamic.com/


Application Note 016 (V1.02 / 2012-AUG-02)      7 

 

 
www.trinamic.com 

5.4 Parameterizing Individual Stepper Motors for Motion 
The preceding basic initializations of interfacing normally need to be done only once. Now, proceed 
as follows: 

- Choose and set the motion parameters v_min and v_max. 

- Choose and set the clock pre-dividers pulse_div and ramp_div. 

- Choose and set the microstep resolution usrs. 

- Set a_max with a valid pair of pmul and pdiv. 

- Choose the switch configuration ref_conf with the ramp mode rm. 

- Pull down to ground or disable the reference switch inputs REF1, REF2, REF3 plus REF1R, 
REF2R, and REF3R by setting ref_conf.  

5.4.1 Choose x_target (for Ramp Mode) or v_target (for Velocity 
Mode) 

With the above mentioned settings the TMC429 runs a motor if one writes either x_target or 
v_target, depending on the choice of the ramp mode rm.  

Each stepper motor has its associated set of registers for motion control. Before running a motor, 
parameters have to be initialized. For many applications there is no need to re-program settings 
done once during initialization.  
 

MODES OF OPERATION: 

The parameters mentioned here allow the adjustment for a wide range of applications.  

- For ramp_mode the microcontroller sends desired target positions x_target and the TMC429 
autonomously takes care of positioning.  

- For velocity_mode, the micro controller sends the desired target velocity v_target to the 
TMC429 to run a stepper motor continuously with that speed.  

 

All motion control parameters are represented as integer resp. signed integer values within units 
that are specific for the TMC429 (depending on the clock frequency used for the TMC429).  

5.4.2 Real World Units, Units of Stepper Motors, and TMC429 Internal 
Units 

From the stepper motor application point of view, motion control parameters within units of 
fullsteps (FS) for position, fullsteps per second (FS/s) for velocity, and fullsteps per second square 
(FS/s^2) for acceleration are natural units for stepper motors. The formulas to calculate into these 
units are given in the TMC429 datasheet section pulse_div & ramp_div & usrs (IDX=%1100).   
 

The following calculation files are available on www.trinamic.com (on TMC429 product page): 

- tmc429_frequencies.xls spread sheet, which calculates between physical motion units (rad, rad/s…) 
and stepper specific units (FS, FS/s, …)*1  

- TMC429Calc.exe standalone program*2  

*1 The link between real world units and stepper motor units in full step units is an application specific gear ration that 
defines how distances (in meters, inches…) or angels (radians, grad…) match with one full step.  

*2 The link between time in seconds and TMC429 units is done via lengths of internal counter and the clock frequency fCLK 
[MHz] of the TMC429.  

 

  

http://www.trinamic.com/


Application Note 016 (V1.02 / 2012-AUG-02)      8 

 

 
www.trinamic.com 

5.4.3 Velocity R [Hz] and Acceleration R [Hz/s] 
The desired microstep frequency R [Hz] and the desired microstep acceleration R [Hz] depend on 
the application. Typical stepper motors can go up to fullstep frequencies of some thousand fullsteps 
per second. Without load, they can accelerate to those fullstep frequencies within a couple of 
fullsteps.  

5.4.3.1 Choosing Microstep Resolution / Step Pulse Pre-Divider / Acceleration 
Pre-Divider 

Microstep resolution, step pulse pre-divider, and acceleration pre-divider have to be set according to 
the following procedure. 
 

1. CHOOSE THE MICROSTEP RESOLUTION 
First, set a microstep resolution. It is assumed that the highest microstep resolution usrs = 6 for the 
driver motion control of the SPI driver chain is set. In step/direction mode the microstep resolution 
is controlled within the driver chip and should be taken into account.  
 

2. SET THE STEP PULSE PRE-DIVIDER 
Then, the pulse pre-divider has to be determined. It allows scaling the step frequencies in a very 
wide range. Therefore take into account the maximum desired velocity v_max. Based on the formula 
R [Hz] = f_clk [Hz] * velocity / ( 2^pulse_div * 2048 * 32 ) given within the TMC429 datasheet one can 
determine  
 
 pulse_div := log( f_clk [Hz] * v_max / ( R [Hz] * 2048 * 32 ) ) / log(2) 
 
setting v_max = 2047 (or 2048 for simplified calculation) and R [Hz] to the maximum desired 
microstep frequency.  
The fullstep frequency can be calculated based on the formula RFS [Hz] = R [Hz] / 2^usrs given within 
the TMC429 data sheet. With this, the microstep frequency is R [Hz] = RFS [Hz] * 2^usrs. The quotient 
of logarithms comes from the relation log2(x) = log(x) / log(2) to calculate the logarithm to the basis 
of two which is the number of bits need to represent x. The calculation result of pulse_div then has 
to be chosen close to the next integer value.  
 

Hint:  
For step/direction control via TMC429, the microstep frequency R [Hz] of the TMC429 is relevant. For 
calculation of full step frequency the microstep resolution of the TMC26x is relevant. This is because 
each step pulse of the TMC429 is a microstep for the TMC26x.  

 
3. SET THE RAMP PRE-DIVIDER 
After determination of pulse_div, the parameter ramp_div can be calculated. Based on the formula 

R[Hz/s] = f_clk[Hz] * f_clk[Hz]  * a_max / ( 2^(pulse_div+ramp_div+29) ) given within the TMC429 
datasheet one can determine  
 

 ramp_div := log( f_clk [Hz] * f_clk [Hz] * a_max / ( R [Hz/s] * 2^(pulse_div+29) ) ) / log(2) 
 

setting a_max = 2047 (or 2048 for simplified calculation) and R [Hz/s] to the maximum desired 
microstep acceleration. The calculation result of ramp_div then has to be chosen close to the next 
integer value.  

  



Application Note 016 (V1.02 / 2012-AUG-02)      9 

 

 
www.trinamic.com 

5.4.3.2 Choosing Step Velocities v_min and v_max and the Step Acceleration 
a_max 

The v_min parameter should be set to 1 (please refer the TMC429 datasheet for details).  

The v_max parameter determines the maximum velocity and has to be set depending on the 
application.  

The change of the parameter a_max requires a recalculation of p_mul and p_div. Once set, the 
a_max parameter can be left untouched for many applications. 
 

Hints for a_max setting:  

If the parameters pulse_div and ramp_div are equal, the parameter a_max can be set to any value 
within the range of 0 … 2047.  

If the parameters pulse_div and ramp_div differ, the limits a_max_lower_limit and 
a_max_upper_limit have to be checked (please refer to the TMC429 datasheet).  

The velocity does not change with a_max = 0.  

5.4.3.3 Calculate p_mul and p_div for a Chosen Set of Parameters 

The two parameters p_mul and p_div have to be calculated for positioning in RAMP_MODE. These 
parameters depend on pulse_div, ramp_div, and a_max. The parameters p_mul and p_div have to 
be recalculated if one of the parameters pulse_div, ramp_div, a_max changes.  
 
An example for calculation of p_mul and p_div for the TMC429 is given as a C program included 
within the TMC429 datasheet. This C program source code can be copied directly out of the PDF 
document. Additionally, a spread sheet named tmc429_pmulpdiv.xls demonstrating the calculation 
of pmul and pdiv is available on www.trinamic.com for download.  
 
The principle of calculation of p_mul and p_div is simple: the routine CalcPMulPDiv(...) gets the 
parameters a_max, ramp_div, pulse_div, with a reduction factor p_reduction. With these parameters, 
a pmul is calculated for any allowed p_div ranging from 0 to 13. The p_div, which results in a valid 
pmul that is in the range of 0 to 127 (resp. p_mul that is in range 128… 255) selects a valid pair of 
p_mul and p_div.  
 

p_mul and p_div have to be determined for each set of pulse_div, ramp_div, and a_max.  

  

http://www.trinamic.com/


Application Note 016 (V1.02 / 2012-AUG-02)      10 

 

 
www.trinamic.com 

5.4.4 Set the Reference Switch Configuration and the Ramp Mode 
Both, the reference switch configuration (ref_conf) and the ramp mode (rm) are configured by access 
to a single register. Normally, this kind of initialization is done only once. Please proceed as follows: 

 

- Choose the switch configuration ref_conf together with the ramp mode rm.  

- Pull unused reference switch inputs REF1, REF2, REF3 down to ground or disable them by 
setting ref_conf. (Otherwise, the REF1, REF2, and REF3 inputs might detect a switch signal 
and stop a motor.) 

 

The most important register part (except reference switch configuration) is the rm for setting 
RAMP_MODE for positioning applications or VELOCITY_MODE for constant speed applications.   

 

Register/ 
Bit 

Stepper motor global 
parameter register 

Function 

23   

22   

21   

20   

19   

18   

17   

16 LP Latched position waiting (read only status bit) 

15   

14   

13   

12   

11 
REF_RnL = 0 

Reference switch right not left (to change assignment of 
left/right switch) 

10 
SOFT_STOP = 1 

Soft stop with deceleration a_max during for active stop 
switch 

9 DISABLE_STOP_R = 1 Disable stop switch right. 

8 DISABLE_STOP_L = 1 Disable stop switch left. 

7   

6   

5   

4   

3   

2   

1 
RM = %00, %01, %10, %11 

Ramp mode:  00 = RAMP_MODE, 01 = SOFT_MODE,  
                  10 = VELOCITY_MODE, 11 = HOLD_MODE 0 

Table 5.3 Example of REF_CONF and RAMP_MODE setting for stepper motor #O (smda = %00) 

 

5.5 Running a Motor 
All necessary settings for getting started are done now. Run your stepper motor as follows:  

RAMP_MODE:  write the desired target position into the register x_target of the associated 
motor.  

VELOCITY_MODE:  write the desired target velocity v_target of the associated motor.   
 



Application Note 016 (V1.02 / 2012-AUG-02)      11 

 

 
www.trinamic.com 

6 Summary 
This application note explains how to initialize a TMC429 motion controller and a TMC26x stepper 
motor driver. The initialization of the TMC429 is done via a sequence of a couple of SPI datagrams. 
The initialization of the stepper motor driver TMC26x is done by up to five SPI datagrams. So, 
altogether the initialization is represented by a sequence of a couple of SPI datagrams. After 
initialization, motion commands can simply be executed by writing motion parameters (target 
positions, target velocities…) into TMC429 registers by sending SPI datagrams.  
 
Based on the low cost motion controller/driver board TMCM-1110 stepRocker, this application note 
shows with a practical example – available as C open source code - how to get a stepper motor 
running. The sample C code is intended to be used as a basis for own developments of customers.  
 

7 Disclaimer 
TRINAMIC Motion Control GmbH & Co. KG does not authorize or warrant any of its products for use 
in life support systems, without the specific written consent of TRINAMIC Motion Control GmbH & 
Co. KG. Life support systems are equipment intended to support or sustain life, and whose failure to 
perform, when properly used in accordance with instructions provided, can be reasonably expected 
to result in personal injury or death. 
 
Information given in this application note is believed to be accurate and reliable. However no 
responsibility is assumed for the consequences of its use nor for any infringement of patents or 
other rights of third parties which may result from its use.  
 
Specifications are subject to change without notice. 
 
All trademarks used are property of their respective owners. 
 

8 Revision History 

8.1 Document Revision 
Version Date Author 

LL – Lars Larsson 

SD – Sonja Dwersteg 

Description 

1.00 2012-FEB-03 LL Initial version 

1.01 2012-MAR-26 SD New design 

1.02 2012-AUG-02 SD Chapter 5.2.1:  

- Column register/bit in Table 5.1 corrected 

- Column if_configuration_429 in Table 5.1 corrected 

- example for SPI datagram to write in the TMC26x 
register configuration corrected.  

 

9 References 
- TMC260/TMC261/TMC262 datasheet, www.trinamic.com 

- TMC429 datasheet, www.trinamic.com 

- stepRocker (TMCM-1110) Hardware Manual, www.trinamic.com 

- stepRocker (TMCM-1110) Getting Started (www.trinamic.com) 

- stepRocker (TMCM-1110) Schematic (www.trinamic.com) 
 

- Open Source Motion Control Community  

- www.motioncontrol-community.org or www.steprocker.com 

http://www.trinamic.com/
http://www.trinamic.com/
http://www.trinamic.com/
http://www.trinamic.com/
http://www.trinamic.com/
http://www.motioncontrol-community.org/
http://www.steprocker.com/


Application Note 016 (V1.02 / 2012-AUG-02)      12 

 

 
www.trinamic.com 

 
 


