
Application Note: TMC429 & TMC24x Getting Started (V. 1.0 / 2012-FEB-10) 1

Copyright © 2012 TRINAMIC Motion Control GmbH & Co. KG

TRINAMIC® Motion Control GmbH & Co. KG
GERMANY

www.trinamic.com

1 Focus of this Application Note

This application describes how to initialize a TMC429 together with a TMC246/TMC249 with basic
parameters to run a stepper motor. It explains how to initialize the SPI chain of TMC246/TMC249
stepper motor drivers, how to read out diagnosis information via the TMC429 from the SPI driver
chain, and how to use stallGuard of the TMC246/TMC249. Additionally, a stallGuard profiler for
rotational and for linear moving applications is included as C source code example. The C source code
examples are freely available for the TRINAMIC evaluations boards TMC429+TMC24X-EVAL and
TMC429+TMC26X-EVAL module for practical tests.

The TMC429 is the drop-in successor for the TMC428. So, existing examples written for the TMC428 are
still valid for the TMC429.

2 Table of contents

1 FOCUS OF THIS APPLICATION NOTE ... 1

2 TABLE OF CONTENTS .. 1

3 INTRODUCTION .. 3

4 INITIALIZATION OF THE TMC429 .. 4

4.1 TMC429 CONFIGURATION RAM FOR TMC236/TMC239/TMC246/TMC249 .. 4
4.2 STEPPER MOTOR GLOBAL PARAMETER REGISTER (JDX=%1111) ... 6
4.3 PARAMETERIZING INDIVIDUAL STEPPER MOTORS ... 7

4.3.1 Velocity R[Hz] and Acceleration R[Hz/s] ... 7
4.3.2 Choosing Micro Step Resolution / Step Pulse Pre-Divider / Acceleration Pre-Divider 7
4.3.3 Choosing Step Velocities v_min and v_max and the Step Acceleration a_max 8
4.3.4 Calculate p_mul & p_div for a Chosen Set of Parameters ... 8
4.3.5 Set the Reference Switch Configuration and the Ramp Mode ... 9
4.3.6 Set the Automatic Current Scaling [optional] .. 9

4.4 RUNNING A MOTOR ... 10

Application Note AN018:

TMC429 & TMC24x Getting Started
Motion Control via SPI

Including stallGuard™ of TMC246/249

http://www.trinamic.com/

Application Note: TMC429 & TMC24x Getting Started (V. 1.0 / 2012-FEB-10) 2

Copyright © 2012 TRINAMIC Motion Control GmbH & Co. KG

4.5 COMMUNICATION OUTLINE OF TMC429DEMO AND SAMPLE428_236... 10
4.6 READING DRIVER CHAIN STATUS BITS WITH TMC429 ... 11
4.7 HOW TO GET THE DRIVER CHAIN STATUS INFORMATION – CODE EXAMPLE .. 13
4.8 HOW TO GET THE STATUS BITS OF TMC246 / TMC249 – CODE EXAMPLE .. 14
4.9 HOW TO GET THE STALLGUARD LOAD INDICATOR (LD) BITS OF TMC246 / TMC249 ... 14

5 STALLGUARD (1) PROFILER ... 15

5.1 STALLGUARD DEMO – SOURCE CODE EXAMPLE ... 15
5.2 STALLGUARD PROFILER – SOURCE CODE EXAMPLE .. 16
5.3 STALLGUARD PROFILER FOR CONTINUOUS MOTION (VELOCITY MODE) .. 16
5.4 STALLGUARD PROFILER FOR LIMITED MOTION RANGE (RAMP_MODE) ... 16
5.5 STALLGUARD – GENERAL CONSTRAINS .. 17

5.5.1 Velocity Ranges for Proper Operation of StallGuard .. 17
5.5.2 Mixed-Decay to be set OFF for StallGuard ... 17
5.5.3 Full Step vs. Half Step vs. Micro Step ... 17
5.5.4 Resistances ... 17

5.6 HOW TO COMPARE DIFFERENT MOTORS CONCERNING STALLGUARD QUALIFICATION ... 18
5.6.1 Comparison by Hand ... 18
5.6.2 Comparison Based on Resonance Frequency .. 18
5.6.3 Why to Take Both, the Torque and the Moment of Inertia in into Account 18
5.6.4 Competition Based on Torque vs. Speed Diagram .. 19

5.7 OVERVIEW OF 'TMC429DEMO' .. 19
5.8 OVERVIEW OF 'SAMPLE428_236' .. 19

6 LITERATURE & LINKS.. 20

7 REVISION HISTORY ... 20

7.1 DOCUMENTATION REVISION ... 20

Table of Figures

Figure 1 : SPI Chain Outline – Serial Transmitted Control Bits vs. Parallel Control Signals 5
Figure 3: Stepper motor global parameter register ... 6
Figure 4: Example of REF_CONF & RAMP_MODE setting for stepper motor # O (smda = %00) 9
Figure 4: Example of REF_CONF & RAMP_MODE setting for stepper motor # O (smda = %00) 10
Figure 5 : Communication Outline for tmc429demo (428 -> 429 aktualisieren) .. 11
Figure 6: Example of status bit mapping for a chain of three TMC246 or TMC249 12
Figure 7 : StallGuard profiling (left: continuous motion / right: motion within limited range) 16
Figure 8 : Outline of a typical StallGuard Profile .. 17

Application Note: TMC429 & TMC24x Getting Started (V. 1.0 / 2012-FEB-10) 3

Copyright © 2012 TRINAMIC Motion Control GmbH & Co. KG

3 Introduction

The TMC429 datasheet gives a detailed description of all its registers and its functionality. In addition
to the TMC429 datasheet, this application note describes the basic steps how to initialize the TMC429
and how to run a motor. It gives two practical examples written in C language – 'tmc429demo.zip'
and 'sample428_236.zip'. The complete sources are available as archives named 'tmc429demo.zip' and
'sample428_236.zip' for download from www.trinamic.com. The C examples can be used as a base for
own applications. The code and information is provided "as is" without warranty of any kind, either
expressed or implied.

The TMC428 datasheet is recommended as a base for this application note. The sample C code
included within 'tmc429demo.zip' is a Win32 console application that communicates with a TMC429
evaluation board via RS232. TMC429 evaluation boards are offered by TRINAMIC distributors. The
compact example 'sample428_236.zip' is intended to outline how to realize an application for running
on a stand-alone micro controller. Routines for communication with the TMC429 via SPITM are specific
for each type of micro controller and have to be added.

This application note has been updated concerning the use of datagram_low_word and
datagram_high_word that build the interface registers to read out diagnosis and status information
from the stepper motor driver chain. This mechanism is also need to read the StallGuard information
– names load indicator bits - from TRINAMIC stepper motor drivers TMC246 and TMC249. In addition,
the implementation of StallGuard profilers is described as now implemented as exemplary C code
within the 'tmc429demo.zip'

In contrast to low level C programming, TRINAMIC credit card size modules come with TMCLTM
(TRINAMIC Motion control Language) together with an IDE (Integrated Development Environment
running under Win2K, XP, W7). TMCL allows rapid prototyping and building user applications without
the need of low level C programming. Please refer to the TMCL user manual resp. the user manuals of
the different modules for details.

http://www.trinamic.com/

Application Note: TMC429 & TMC24x Getting Started (V. 1.0 / 2012-FEB-10) 4

Copyright © 2012 TRINAMIC Motion Control GmbH & Co. KG

4 Initialization of the TMC429

On first sight, the sample C code included within the ZIP archive 'tmc429demo.zip' might give the
impression that the initialization of the TMC429 is a complicated task due to a couple of different
routines used. The intent of this sample C code and its different routines is to demonstrate how to
access the registers of the TMC429. All together, these routines just perform a sequence of SPI
datagramms that perform the initialization of the TMC429. So, for those who are familiar with the
TMC429 and its SPI datagramms, the program structure might become more compact and the
initialization code might look like

for (i=0; i<(128-2); i+=2) // initialize TMC429 RAM table (SPI conf. & quarter sine wave LUT)

{
 spo = 0x80000000 | (i<<(25-1)) | (tmc429_ram_tab[i+1]<<8) | (tmc429_ram_tab[i]); // RRS=1, RW=0

 spi = tmc429spi(spo);

}

spi = tmc429spi(0x7E010701); // initialize stepper motor global parameter register, LSMD=1 for EvalKit

spi = tmc429spi(0x........); // initialize . . .

where tmc429_ram_tab[] is an array representing the content of the TMC429 configuration RAM (see
section 0) and tmc429spi(long int spo) represents a routine that sends a 32 bit wide SPI datagram to
the TMC429 and receives a 32 bit wide SPI datagram from the TMC429. The TMC429 needs to be
initialized after each power on. A micro controller is suitable to do the initialization of the TMC429 by
just sending a sequence of SPI datagramms to the TMC429 after power on. The TMC429 itself
performs a power on reset (POR). Almost any register of the TMC429 is set to zero by the POR. The
RAM of the TMC429 is not initialized by the power on reset, and so the RAM has a more or less
random content after power on. In contrast to power on, there is no need for re-initialization of the
TMC429 after it has been set into power-down by writing the power_down (JDX=%1000) register. The
initialization of the TMC429 enfolds three main phases:

1. initializing the TMC429 configuration RAM
2. configuring the stepper motor global parameter register
3. parameterizing individual stepper motor registers

• choose micro step resolution / step pulse pre-divider / acceleration pre-divider
• choose step velocities v_min and v_max and the step acceleration a_max
• calculate pmul & pdiv for the chosen set of parameters
• set the reference switch configuration and the ramp mode
• set the automatic current scaling [optional]

4.1 TMC429 Configuration RAM for TMC236/TMC239/TMC246/TMC249

First of all, the stepper motor driver datagram configuration has to be written into the RAM area of
the TMC428. Additionally, the micro step look-up table (LUT) has to be initialized when using micro
stepping. Both tables should be put into one single array for initialization of the TMC428 by the micro
controller after power up. The following constant array represents the configuration concerning
stepper motor driver chain and sine wave look up table according to the example given within the
TMC428 datasheet (sections "Stepper Motor Driver Datagram Configuration" and "Initialization of the
Microstep Look-Up-Table"):

unsigned char tmc429_ram_tab[128]=

{
0x10, 0x05, 0x04, 0x03, 0x02, 0x06, 0x10, 0x0D, 0x0C, 0x0B, 0x0A, 0x2E, 0x11, 0x05, 0x04, 0x03,
0x02, 0x06, 0x11, 0x0D, 0x0C, 0x0B, 0x0A, 0x2E, 0x07, 0x05, 0x04, 0x03, 0x02, 0x06, 0x0f, 0x0D,

0x0C, 0x0B, 0x0A, 0x2E, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11,

0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11,

0x00, 0x02, 0x03, 0x05, 0x06, 0x08, 0x09, 0x0B, 0x0C, 0x0E, 0x10, 0x11, 0x13, 0x14, 0x16, 0x17,

0x18, 0x1A, 0x1B, 0x1D, 0x1E, 0x20, 0x21, 0x22, 0x24, 0x25, 0x26, 0x27, 0x29, 0x2A, 0x2B, 0x2C,

0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x38, 0x39, 0x3A, 0x3B,

0x3B, 0x3C, 0x3C, 0x3D, 0x3D, 0x3E, 0x3E, 0x3E, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F
};

Application Note: TMC429 & TMC24x Getting Started (V. 1.0 / 2012-FEB-10) 5

Copyright © 2012 TRINAMIC Motion Control GmbH & Co. KG

The first 64 bytes represent the stepper motor driver chain configuration for a chain of three
TRINAMIC stepper motor drivers of type TMC236 / TMC239 / TMC246 / TMC249. The values 0x2E values
represent the primary signal code 0x0E (= mnemonic PH_B) with the NxM bit set.

For this sample configuration, the fast decay control bits of TMC428 are mapped as fixed Zero for the
driver #1, fixed One for the driver #2 of the chain. For driver # 3 the FD_A is mapped to MDA and
FD_B is mapped to MDB. Please refer the TRINAMIC stepper motor driver datasheets (TMC236 / TMC239
/ TMC246 / TMC249) concerning the mixed decay feature. In plain text, it is

Zero, A_5, A_4, A_3, A_2, PH_A, Zero, B_5, B_4, B_3, B_2, PH_B, One, A_5, A_4, A_3,

 A_2, PH_A, One, B_5, B_4, B_3, B_2, PH_B, FD_A, A_5, A_4, A_3, A_2, PH_A FD_B, B_5,
 B_4, B_3, B_2, PH_B, One, One, One, One, One, One, One, One, One, One, One, One,

 One, One, One, One, One, One, One, One, One, One, One, One, One, One, One, One,

 0, 2, 3, 5, 6, 8, 9, 11, 12, 14, 16, 17, 19, 20, 22, 23,
 24, 26, 27, 29, 30, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44,

 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59,

 59, 60, 60, 61, 61, 62, 62, 62, 63, 63, 63, 63, 63, 63, 63, 63

Please keep in mind that the DAC MSBs of the TMC428 are DAC_A_5 resp. DAC_B_5, where the DAC
MSBs of the TMC236 / TMC239 / TMC246 / TMC249 drivers are CA3 resp. CB3. So, DAC_A_5 is mapped to
CB3 resp. DAC_B_5 is mapped to CB3, and the other DAC bits are mapped accordingly. Once
initialized, the configuration of the stepper motor driver chain is left unchanged in most cases during
normal operation. In some cases, the fast decay control has to be changed. Please take into account
that a write access to a RAM always overwrites a pair of TMC428 RAM values. A read access to the
RAM always reads out a pair of values. Combining RAM read and RAM write allows the modification
of a single value.

Use of the sensorless stall detection StallGuard (TMC246 / TMC249) requires the mixed decay feature to
be switched off. At high speed, stepper motors might run better when the fast decay feature is
permanently switched on. Some motors run best when mixed decay is switched on only during
phases of decreasing current. The configuration can be modified also during operation by re-
programming the stepper motor driver chain configuration.

The quarter sine wave look-up table RAM area is left unchanged for almost any application after it has
been initialized. Changes might be wanted for fine tuning of micro stepping or for temporary
changing from micro stepping to full stepping at high speed or to use a trapezoidal current shape
that is more compatible with StallGuard than full stepping. Sine wave micro stepping is the best
choise for most applications. Additionally, one has to take into account that changes of the quarter
sine wave look-up table commonly apply to all stepper motors.

SDO_S

nSCS_S

shift register

parallel register

SDI

TMC236 / TMC239 / TMC246 / TMC249

SCK

CSN

SDO

M
D

A

C
A

3

C
A

1

C
A

2

C
A

0

P
H

A

M
D

B

C
B

3

C
B

1

C
B

2

C
B

0

P
H

B

108 976542 310 11

control signals

Driver # 3

shift register

parallel register

SDI

TMC236 / TMC239 / TMC246 / TMC249

SCK

CSN

SDO

M
D

A

C
A

3

C
A

1

C
A

2

C
A

0

P
H

A

M
D

B

C
B

3

C
B

1

C
B

2

C
B

0

P
H

B

108 976542 310 11

control signals

Driver # 2

shift register

parallel register

SDI

TMC236 / TMC239 / TMC246 / TMC249

SCK

CSN

SDO

M
D

A

C
A

3

C
A

1

C
A

2

C
A

0

P
H

A

M
D

B

C
B

3

C
B

1

C
B

2

C
B

0

P
H

B

108 976542 310 11

control signals

Driver # 1

SCK_S

SDI_S

Figure 1 : SPI Chain Outline – Serial Transmitted Control Bits vs. Parallel Control Signals

Application Note: TMC429 & TMC24x Getting Started (V. 1.0 / 2012-FEB-10) 6

Copyright © 2012 TRINAMIC Motion Control GmbH & Co. KG

All SPI datagram bits are shifted through the driver chain (Figure 1) with the SPI clock SCK_C. The
actual content of the shift register chain is loaded into parallel buffer registers with the rising edge of
the SPI enable signal nSCS_S. A set next motor bit forces the TMC428 to select internally the control
bits for the next motor. The next motor bit is not transmitted via the SPI driver chain. The different
drivers are addressed by their position within the chain.

Hint: In contrast to the TMC428, the TMC429 loads a default initialization into its configuration RAM for
a TMC236/TMC239/TMC246/TMC249 stepper motor driver SPI chain (pls. refer TMC429 datasheet).

4.2 Stepper Motor Global Parameter Register (JDX=%1111)

The stepper motor global parameter register holds different flags (mot1r, refmux) to configure the
references switches (REF1, REF2, REF3), the SPI interface update behavior (continuous_update), speed
(clk2_div), chip select (csCommonIndividual), the polarities of different control bits of the SPI
datagramms (DAC_AB, FD_AB, PH_AB) and the polarities of SPI control signals (SCK_S, nSCS_S) , and
the number (LSMD) of stepper motor drivers within the chain. Please refer to the TMC428 data sheet
concerning functionalities of the flags. Figure 2 outlines an SPI datagram 0x7E010702 to initialize
the stepper motor global parameter register with LSMD=2 for 3 stepper motor drivers.

Register/
Bit

stepper motor global
parameter register

function

23

22

21 mot1r = 0 for SD_EN=1 of in if_configuration_429 this control bit is ignored

20 refmux = 1 for SD_EN=1 of in if_configuration_429 this control bit is ignored

19

18

17

16 continuous_update = 1 for SD_EN=1 of in if_configuration_429 this control bit is ignored

15

clk2_div[7…0]=7
(for SD_EN=0)

(for SD_EN=1)

for SD_EN=0 this defines the timing of the SPI for the SPI stepper
motor driver chain, for SD_EN=1 of in if_configuration_429 this defines
the timing of the step direction interface;

14

13

12

11

clk2_div[3…0]=0
(for SD_EN=1)

10

9

8

7 csCommonIndividual = 1
for SD_EN=0 this is the SPI configuration addressing mode bit; for
SD_EN=1 of in if_configuration_429 this part of the register is ignored

6 DAC_AB = 0

polarities (0 : positive / 1 : inverted) of the SPI signals for the SPI
stepper motor driver chain; these polarities are not relevant for the
step direction mode of TMC429 (for EN_SD=1)

5 FD_AB = 0

4 PH_AB = 0

3 SCK_S = 0

2 nSCS_S = 0

1
LSDM = 00, 01, 10

last stepper motor driver; this is important for the SPI driver chain;
it is not relevant for step direction mode of TMC429 0

Figure 2: Stepper motor global parameter register (SPI datagram 0x7E010702)

Application Note: TMC429 & TMC24x Getting Started (V. 1.0 / 2012-FEB-10) 7

Copyright © 2012 TRINAMIC Motion Control GmbH & Co. KG

4.3 Parameterizing Individual Stepper Motors

Each stepper motor has its associated set of registers for motion control. Before running a motor,
some parameters have to be initialized once. For many applications, there is no need to re-program
settings done once during initialization. Once initialized, the motion control becomes quite easy. For
ramp_mode the micro controller just sends desired target positions and the TMC429 autonomously
takes care of positioning. For velocity_mode, the micro controller just sends the desired target velocity
to the TMC429 to run a stepper motor continuously.

On first sight, the determination of the required parameters might look a little bit complicated but it
is simple. These parameters allow the adjustment to a very wide range of applications. The motion
control parameters are represented as integer resp. signed integer values within units that are specific
for the TMC429 depending on the clock frequency used for the TMC429.

From the stepper motor application point of view, motion control parameters within units of full
steps (FS) for position, full steps per second (FS/s) for velocity, and full steps per second square
(FS/s^2) for acceleration are natural units for stepper motors. The formulas to calculate into these
units are given within the TMC429 data sheet section pulse_div & ramp_div & usrs (IDX=%1100)). A
spread sheet named 'tmc429_frequencies.xls' that calculates between physical motion units (rad,
rad/s, …) and stepper specific units (FS, FS/s, …) and a stand-alone program 'TMC429Calc.exe' are
available on www.trinamic.com

4.3.1 Velocity R[Hz] and Acceleration R[Hz/s]

The desired micro step frequency R[Hz] and the desired R[Hz] micro step acceleration depend on the
application. Typical stepper motors can go up to full step frequencies of some thousand full steps per
second. Without load, they can accelerate to those full step frequencies within a couple of full steps.

4.3.2 Choosing Micro Step Resolution / Step Pulse Pre-Divider / Acceleration Pre-Divider

First, one has to choose the micro step resolution. Following, the highest micro step resolution is
chosen be setting usrs = 6. Then, the pulse pre-divider has to be determined. It allows to scale the

step frequencies in a very wide range. Based on the formula R[Hz] = f_clk[Hz] * velocity / (2^pulse_div
* 2048 * 32) given within the TMC428 datasheet one can determine

 pulse_div := log(f_clk[Hz] * v_max / (R[Hz] * 2048 * 32)) / log(2)

setting v_max = 2047 (resp. 2048 for simplified calculation) and R[Hz] to the maximum desired micro
step frequency. The full step frequency can be calculated based on the formula RFS[Hz] = R[Hz] / 2^usrs
given within the TMC428 data sheet. With this, the micro step frequency is R[Hz] = RFS[Hz] * 2^usrs. The
quotient of logarithms comes from the relation log2(x) = log(x) / log(2) to calculate the logarithm to
the basis of two which is the number of bits need to represent x. The calculation result of pulse_div
then has to be chosen close to the next integer value.

After determination of pulse_div, the parameter ramp_div can be calculated. Based on the formula

R[Hz/s] = f_clk[Hz] * f_clk[Hz] * a_max / (2^(pulse_div+ramp_div+29)) given within the TMC429
datasheet one can determine

 ramp_div := log(f_clk[Hz] * f_clk[Hz] * a_max / (R[Hz/s] * 2^(pulse_div+29))) / log(2)

setting a_max = 2047 (resp. 2048 for simplified calculation) and R[Hz/s] to the maximum desired
micro step acceleration. The calculation result of ramp_div then has to be chosen close to the next
integer value.

http://www.trinamic.com/

Application Note: TMC429 & TMC24x Getting Started (V. 1.0 / 2012-FEB-10) 8

Copyright © 2012 TRINAMIC Motion Control GmbH & Co. KG

4.3.3 Choosing Step Velocities v_min and v_max and the Step Acceleration a_max

The v_min parameter should be set to 1 (please refer the TMC428 data sheet for details). The v_max
parameter determines the maximum velocity and has to be set depending on the application. Once
set, the a_max parameter can be left untouched for many applications. Change of the parameter
a_max requires recalculation of p_mul and p_div.

If the parameters pulse_div and ramp_div are equal, the parameter a_max can be set to any value
within the range of 0 … 2047. If the parameters pulse_div and ramp_div differ, the limits
a_max_lower_limit and a_max_upper_limit have to be checked (please refer to the TMC datasheet for

details). The velocity does not change with a_max = 0.

4.3.4 Calculate p_mul & p_div for a Chosen Set of Parameters

Two parameters named p_mul and p_div have to be calculated for positioning in RAMP_MODE. These
parameters depend on pulse_div, ramp_div, and a_max. So, they have to be determined for a set of
pulse_div, ramp_div, a_max. The parameters p_mul and p_div have to be recalculated if one of the
parameters pulse_div, ramp_div, a_max changes.

An example for calculation of p_mul and p_div for the TMC428 is given as a C program included

within the TMC428 datasheet. This C program source code can be copied directly out of the PDF
document. Additionally, a spread sheet named tmc429_pmulpdiv.xls demonstrating the calculation of
pmul and pdiv is available on www.trinamic.com for download.

The principle of calculation of p_mul and p_div is simple: The routine CalcPMulPDiv(...) gets the
parameters a_max, ramp_div, pulse_div, with a reduction factor p_reduction. With these parameters,
a pmul is calculated for any allowed p_div ranging from 0 to 13. That p_div, that results in a valid
pmul that is in the range of 0 to 127 (resp. p_mul that is in range 128 … 255) selects a valid pair of
p_mul and p_div.

http://www.trinamic.com/

Application Note: TMC429 & TMC24x Getting Started (V. 1.0 / 2012-FEB-10) 9

Copyright © 2012 TRINAMIC Motion Control GmbH & Co. KG

Except reference switch configuration, the most important register part is the rm to set the mode of
motion RAMP_MODE for positioning applications or VELOCITY_MODE for constant speed applications.

Register/
Bit

stepper motor global
parameter register

function

23

22

21

20

19

18

17

16 LP latched position waiting (read only status bit)

15

14

13

12

11 REF_RnL = 0 reference switch right not left (to change assignment of left/right switch)

10 SOFT_STOP = 0 soft stop with deceleration a_max during for active stop switch

9 DISABLE_STOP_R = 1 disable stop switch right

8 DISABLE_STOP_L = 1 disable stop switch left

7

6

5

4

3

2

1
RM = %00, %01, %10, %11

ramp mode: 00 = RAMP_MODE, 01 = SOFT_MODE,
 10 = VELOCITY_MODE, 11 = HOLD_MODE 0

Figure 3: REF_CONF & RAMP_MODE setting for stepper motor # O (smda = %00) 0x14000300

4.3.5 Set the Reference Switch Configuration and the Ramp Mode

Both, the reference switch configuration and the ramp mode are configured by access to a single
register. Normally, this kind of initialization is done once. The switch configuration ref_conf together
with the ramp mode rm has to be chosen. Unused reference switch inputs REF1, REF2, REF3 should be
pulled down to ground or disabled by setting ref_conf. Otherwise, the REF1, REEF2, REF3 inputs might

detect a switch signal and stop a motor.

4.3.6 Set the Automatic Current Scaling [optional]

With the power-on reset settings, the full current is driven when the motor is at rest, during
acceleration, and during motion. Automatic down scaling when the motor is at rest reduces power
dissipation. This makes sense if the application allows lower holding torque for a motor at rest.

For automatic current scaling, it is necessary to switch on the continuous_update, to force the

TMC429 to send the current scaling datagram, even if all motors are at rest. That does not cause the
TMC429 to sent datagramms to the stepper motor driver chain.

Hint: The automatic current scaling is for SPI control of stepper motor driver chain only.

Application Note: TMC429 & TMC24x Getting Started (V. 1.0 / 2012-FEB-10) 10

Copyright © 2012 TRINAMIC Motion Control GmbH & Co. KG

Register/
Bit

stepper motor global
parameter register

function

23

22

is_agtat = 000 21

20

19

18

is_aleat = 000 17

16

15

14

is_v0 = 001 13

12

11

10

a_threshold = 0

9

8

7

6

5

4

3

2

1

0

Figure 4: Current Scaling Register for stepper motor # O (smda = %00) 0x10001000

4.4 Running a Motor

With all these settings described before, one can simply run a stepper motor. In RAMP_MODE, one
just has to write the desired target position into the register x_target of the associated motor. In
VELOCITY_MODE, one just has to write the desired target velocity v_target of the associated motor.

4.5 Communication Outline of tmc429demo and sample428_236

The tmc429demo.exe is a Win32 console application. Its communication takes place over a RS232
interface byte by byte. The windows based RS232 communication is used to perform a 32 bit wide
SPI communication with the TMC428 on a evaluation kit.

For an embedded application running stand alone on a µC, the user just has to write an SPI routine
for the µC used for communication between µC and TMC429. For the code example sample428_236,
the SPI routine spi429_uc() for communication with the TMC429 is named Send428(). This has to be
completed for a given type of micro controller.

The communication is outlined by Figure 5 on page 11.

Application Note: TMC429 & TMC24x Getting Started (V. 1.0 / 2012-FEB-10) 11

Copyright © 2012 TRINAMIC Motion Control GmbH & Co. KG

tmc429spi()

rs232win32()

TMC429DEMO

main()

rs232uc()

µC + TMC429

(e.g. evaluation board)

Windows-PC
Embedded System

(µC + TMC429)

TMC429

tmc429spi()

spi4win()

RS232

(or virtual COM:)

*s
p

i4
2

9
_
u

c
()

 t
o

 b
e

 i
m

p
le

m
e

n
te

d
 b

y
 u

s
e

r

(e
it

h
e

r
s

o
ft

w
a

re
 S

P
I
o

r
h

a
rd

w
a

re
 S

P
I)

TMC429DEMO

main()

spi429_uc()*

Windows-PC / µC Eval Board Configuration
Stand-Alone µC-TMC429

Configuration

RS232

spi429_uc()*

TMC429

Figure 5 : Communication Outline for tmc429demo (SPI over RS232 or virtual COM port)

4.6 Reading Driver Chain Status Bits with TMC429

Beyond the basic initializations required to run stepper motors with the TMC428, the read out of
status bits from the stepper motor driver chain is important for diagnosis and to use the sensorless
stall detection StallGuard that is integrated within the TMC246 and TMC249 stepper motor drivers.

The status bits of TMC246 and TMC249 are: three load indicator bits (LD2, LD1, LD0), over temperature
(OT), over temperature pre-warning (OTPW), under voltage (UV), over current high side (OCHS), open
load bridge B (OLB), open load bridge A (OLA), over current bridge B low side (OCB), over current
bridge A low side (OCA). For the TMC236 and TMC239, the load indicator bits (LD2, LD1, LD0) are
permanent ‘0’. The status bits are shifted through the driver chain. The SDO output of the last stepper
motor driver of the SPI chain has to be connected with the SDI_S of the TMC429.

To get the status bits from the stepper motor driver chain, fetching of them has to be initialized first
by a write access to either datagram_high_word or datagram_low_word. Then, with the next SPI

datagram the TMC429 sends to the stepper motor driver chain, it gets associated stepper motor status
bits and holds them within the registers datagram_high_word and datagram_low_word.

Due to the fact, that the TMC429 autonomously updates the stepper motor driver chain, status
information is required that indicates that datagram_high_word and datagram_low_word have been
updated. The status bit CDGW (Cover DataGram Waiting) provides this status information. Its name

CDGW sometimes causes a little confusion. In principle, the CDGW should be named like

Application Note: TMC429 & TMC24x Getting Started (V. 1.0 / 2012-FEB-10) 12

Copyright © 2012 TRINAMIC Motion Control GmbH & Co. KG

CDGW_or_WFDHWDLW (Cover DataGram Waiting / Waiting for Datagram High Word Datagram Low

Word). The cover datagram mechanism – to send an arbitrary datagram from the µC to the stepper
motor driver chain – and the datagram high word and datagram low word both use this single status
bit named CDGW. The CDGR status bit is part of each SPI datagram sent from TMC428 to µC.

To get the driver chain status bits, the following actions have to be done:

1. Initialize the fetching mechanism by a write to datagram_high_word or
datagram_low_word

2. Send datagramms to the TMC428 (e.g. read out some TMC428 registers)
3. Extract the CDGW from datagramms received from the TMC428 to read the CDGW
4. Read the CDGW until it becomes ‘0’
5. If the CDGW is ‘0’ read out the datagram_high_word and datagram_low_word
6. Extract the status bits of interest from datagram_high_word and datagram_low_word

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

last TMC246 driver of the chain (stepper motor #1)

LD2 LD1 LD0 1 OT OTPW UV OCHS OLB OLA OCB OCA

datagram_high_word

datagram_low_word

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

first TMC246 driver of the chain (stepper motor # 3)second TMC246 driver of the chain (stepper motor # 2)

LD2 LD1 LD0 1 OT OTPW UV OCHS OLB OLA OCB OCALD2 LD1 LD0 1 OT OTPW UV OCHS OLB OLA OCB OCA

SDI_S

Figure 6: Example of status bit mapping for a chain of three TMC246 or TMC249

Application Note: TMC429 & TMC24x Getting Started (V. 1.0 / 2012-FEB-10) 13

Copyright © 2012 TRINAMIC Motion Control GmbH & Co. KG

4.7 How to Get the Driver Chain Status Information – Code Example

The following C code example (part of tmc429demo.zip) outlines how to get the raw status bits from
a SPI stepper motor driver chain into the TMC428 registers datagram_high_word and
datagram_low_word.

void tmc429_get_datagram_words(long int *datagram_low_word, long int *datagram_high_word)
{
 long int spi, spo;

 // write datagram_low_word (or high_word) for initialization, sets CDGW to '1'
 spi = spi429glue(0, 0x3, JDX_DATAGRAMM_LOW, WRITE, 0);
 spo = tmc429spi(spi);

 // wait until CDGW becomes '0'
 do
 {
 Sleep(1); // (wait 1ms, allows the operating system to focus on other tasks)

 spi = spi429glue(0, 0x3, JDX_DATAGRAMM_LOW, READ, 0);
 spo = tmc429spi(spi);

 } while (!(0x40000000 & (~spo))); // mask CDGW

 spi = spi429glue(0, 0x3, JDX_DATAGRAMM_LOW, READ, 0);
 spo = tmc429spi(spi);

 *datagram_low_word = 0x00FFFFFF & spo;

 spi = spi429glue(0, 0x3, JDX_DATAGRAMM_HIGH, READ, 0);
 spo = tmc429spi(spi);

 *datagram_high_word = 0x00FFFFFF & spo;
}

Application Note: TMC429 & TMC24x Getting Started (V. 1.0 / 2012-FEB-10) 14

Copyright © 2012 TRINAMIC Motion Control GmbH & Co. KG

4.8 How to Get the Status Bits of TMC246 / TMC249 – Code Example

The following C code example (part of tmc429demo.zip) outlines how to get the raw status bits of
each TMC246 or TMC249 driver. This is just a little data shifting.

void tmc429_get_tmc24x_status_bits(int *sm0_status, int *sm1_status, int *sm2_status)
{
 long int datagram_low_word, datagram_high_word;
 int lsmd;

 // this routine assumes a chain of up to three TMC246 / TMC249 drivers
 // pls. refer TMC428 datasheet v. 2.02 / April 26, 2007 or newer

 tmc429_get_datagram_words(&datagram_low_word, &datagram_high_word);

 // 1st, determine the number of TMC246 resp. TMC249 stepper motor drivers

 tmc429_get_lsmd(&lsmd);

 switch (((char)lsmd))
 {
 case 3 : ; // TMC428 interprets LSMD=3 as LSMD = 2 // NO "break;"
 case 2 : *sm0_status = 0x0fff & (datagram_high_word >> 0); // motor #1
 *sm1_status = 0x0fff & (datagram_low_word >> 12); // motor #2
 *sm2_status = 0x0fff & (datagram_low_word >> 0); // motor #3
 break;

 case 1 : *sm0_status = 0x0fff & (datagram_low_word >> 12); // motor #1
 *sm1_status = 0x0fff & (datagram_low_word >> 0); // motor #2
 *sm2_status = 0x0000; // motor #3
 break;

 case 0 : *sm0_status = 0x0fff & (datagram_low_word >> 0); // motor #1
 *sm1_status = 0x0000; // motor #2
 *sm2_status = 0x0000; // motor #3
 break;
 }
}

4.9 How to Get the StallGuard Load Indicator (LD) Bits of TMC246 / TMC249

The following C code example (part of tmc429demo.zip) outlines how to get the load indicator bits of
each TMC246 or TMC249 driver to be used for StallGuard.

void tmc429_get_tmc24x_stallguard_bits(int sm, int *ld)
{
 int sm0_status, sm1_status, sm2_status;

 tmc429_get_tmc24x_status_bits(&sm0_status, &sm1_status, &sm2_status);

 switch (((char)sm))
 {
 case 0 : *ld = 0x7 & (sm0_status >> 9); break;
 case 1 : *ld = 0x7 & (sm1_status >> 9); break;
 case 2 : *ld = 0x7 & (sm2_status >> 9); break;
 }
}

At a given speed, a stall of the motor is detected by comparing load indicator bits (LD2, LD1, LD0)
forming a three bit vector LD with a threshold. The threshold has to be determined for a given
stepper motor within its application. The stallGuard signal (load indicator bits) depends on the speed
of the motors.

Application Note: TMC429 & TMC24x Getting Started (V. 1.0 / 2012-FEB-10) 15

Copyright © 2012 TRINAMIC Motion Control GmbH & Co. KG

5 StallGuard (1) Profiler

StallGuard (1) is primarily intended for noiseless reference search with a mechanical reference
position. How well StallGuard works primarily depends on three constrains from the stepper motor
and its application:

 efficiency of a stepper motor in terms of mechanical power vs. power dissipation

 difference in mechanical load between free running and stall on barrier

 velocity of the stepper motor

If a given stepper motor and its application fit well to StallGuard, the optimal velocity has to be
determined for StallGuard. Generally, there is not only one optimal velocity for StallGuard. There are
ranges of velocities that are sufficient for StallGuard.

The goal of a StallGuard profiler is to determine the ranges of velocities that fit well for the
sensorless stall detection. Each velocity of a given stepper motor is associated with an individual
StallGuard level. Mechanical load – as occurs on a stall – changes the StallGuard level.

There are two kinds of StallGuard profilers: One for continuous motion and one for motion within a
limited range of motion.

Because StallGuard is able to sense oscillations of the rotor, after acceleration it is necessary to wait a
while until the StallGuard load indicator are valid to detect a stall.

So, first one has to accelerate to the velocity that is to be profiled. When the acceleration phase is
finished, one has to wait a while (typical 100 ms for a free running stepper motor) before processing
of the StallGuard load indicator bits. Then one measures n (e.g. n=10) times the value of the load
indicator bits an calculates and calculates the mean value and the standard deviation for each
velocity.

The resolution of StallGuard concerning detection of a mechanical reference point is one full step.

5.1 StallGuard Demo – Source Code Example

A source code example of a stallGuard demonstration (routine tmc429_stallguard_demo(…)) is part of
the tmc429demo.zip (pls. refer ‘tmc429_misc.c). The parameters are

 sm : stepper motor (0, 1, 2)
 vmax : velocity of the stepper motor number sm
 sgl : StallGuard level (0, 1, 2, 3, 4, 5, 6, 7)

The read stallGuard values (load indicator bit vectors ld) are continuously printed on the console. If a
stall is detected (ld < sgl) it additionally prints “stallGuard @ x_actual” where x_actual is the actual
position where a stall has been detected. Other parameters (a_max, …) are use as they currently set.

Application Note: TMC429 & TMC24x Getting Started (V. 1.0 / 2012-FEB-10) 16

Copyright © 2012 TRINAMIC Motion Control GmbH & Co. KG

5.2 StallGuard Profiler – Source Code Example

A source code example of a StallGuard profiler (routine tmc429_stallguard_profiler(…)) is are part of the
tmc429demo.zip (pls. refer ‘tmc429_misc.c). This StallGuard Profiler performs both, StallGuard profiling
for continuous motion (VELOCITY_MODE) and StallGuard profiling for motion within limited range of
motion. The parameters are

 sm : stepper motor (0, 1, 2)

 v_traget_min : minimum target velocity of the stepper motor for profiling

v_target_max : maximum target velocity of the stepper motor for profiling
 v_step : target velocity increment width

 x_min : start position for profiling
 x_max : end position for profiling

Other parameters (a_max, …) are used as they currently set.

5.3 StallGuard Profiler for continuous motion (VELOCITY MODE)

For x_min==x_max the StallGuard profiler runs in VELOCITY_MODE for StallGuard profiling within

continuous motion.

5.4 StallGuard Profiler for limited motion range (RAMP_MODE)

For x_min!=x_max the stallGuard profiler runs in RAMP_MODE moving between position x_min and
position x_max. For each actual target velocity, the stallGuard profiler calculates the number of full

steps required to perform stallGuard profiling (pls. refer tmc429_stallguard_profiler(…)for details). If the
number of full steps are sufficient to perform stallGuard profiling it does it, if not it skips the profiling
for the target velocity and prints an error message concerning this.

StallGuard

valid (LD bits)

VELOCITY_MODE

v(t)

t

StallGuard

valid (LD bits)

RAMP_MODE

v(t)

t

Figure 7 : StallGuard profiling (left: continuous motion / right: motion within limited range)

Application Note: TMC429 & TMC24x Getting Started (V. 1.0 / 2012-FEB-10) 17

Copyright © 2012 TRINAMIC Motion Control GmbH & Co. KG

v

-LD

ra
n

g
e
 o

f

lo
w

 B
E

M
F

re
s

o
n

a
n

c
e

ra
n

g
e
 o

f

to
rq

u
e

d
e

c
re

a
s

e

best velocity ranges for

proper operation

Figure 8 : Outline of a typical StallGuard Profile

5.5 StallGuard – General Constrains

5.5.1 Velocity Ranges for Proper Operation of StallGuard

For stallGuard, on should run the stepper motor within the velocity ranges that are best for proper
operation of stallGuard. For a given stepper motor, these ranges can be determined using the
stallGuard Profiler. Although it is not the goal of the stallGuard profiler, it can be used to determine
the resonance frequency of a stepper motor.

Proper velocities of operation for StallGuard are those with low LD bit vector value and low standard
deviation. Without load, one gets load indicator bit vector LD. Under mechanical load at the axis of
the stepper motor, one gets a lower value of the load indicator bit vector LD.

So, velocities with high load indicator values are good for stallGuard. Low standard deviation means,
that one gets stable load indicator bits. The load indicator values might vary by one if they are close
to one of the internal thresholds of the TMC246 / TMC249 stepper motor drivers at a given velocity.

5.5.2 Mixed-Decay to be set OFF for StallGuard

The mixed-decay (MD) feature of the TMC246 and TMC249 has to be set off (MDA='0', MDB='0') when
using stallGuard. This is because the mixed-decay forces a better current regulation but it regulation
disadvantageously interferes the measurements of stallGuard. Under special conditions, stallGuard
might work together with mixed-decay, but with restrictions.

5.5.3 Full Step vs. Half Step vs. Micro Step

StallGuard is compatible with full stepping, but it gives the best performance with micro stepping due
to lower mechanical resonances of the stepper motor when driven by micro stepping [Larsson2003].

5.5.4 Resistances

The coil resistance of a stepper motor and the resistance of the sense resistors should be of the same
order of magnitude – not of same value. Stepper motors of low coil resistance are advantageous in
most cases, because those kinds of stepper motors mostly have a higher efficiency. On the other
hand, a higher resistance of the sense resistors improves the stallGuard by higher signal amplitude of
the sense signal and by lower signal noise ratio. For higher resistance sense resistors one can use a
higher external reference voltage of up to 3V ((please refer TMC246 / TMC249 datasheets for details).

Application Note: TMC429 & TMC24x Getting Started (V. 1.0 / 2012-FEB-10) 18

Copyright © 2012 TRINAMIC Motion Control GmbH & Co. KG

5.6 How to Compare Different Motors Concerning StallGuard Qualification

One could directly compare stepper motors concerning the qualification for StallGuard based on the

efficiency. The efficiency naturally is not found within stepper motor datasheets. This is because
stepper motors are not intend to be most efficient in terms of mechanical efficiency – stepper motors
are efficient in terms of pricing, precise control, reliability, torque at low speed, cost concerning
mechatronic systems.

5.6.1 Comparison by Hand

A simple test to compare stepper concerning their efficiency is to short both coils an to turn the axis.
A stepper motor of high efficiency breaks stronger than a stepper motor of lower efficiency.

5.6.2 Comparison Based on Resonance Frequency

Normally, the resonance frequency is not found within stepper motor datasheets. The torque
almost vanishes at a speed near resonance. It can be avoided by micro stepping or by fast going
through the resonance frequency range. Nevertheless, the resonance frequency of a stepper motor can
relatively easy be measured and characterizes it concerning its efficiency.

A torque proportional to a displacement between rotor and magnetic field forms a harmonic
oscillator with a resonance frequency

,
2

1
0

M

I

J

I

where I = (Ix

2 + Iy
2)1/2 is the absolute value of the coil currents Ix and Iy, and JM is the moment of

inertia of rotor axis. This expression can be transformed to

IJ IM 2

0

24

In other words, at a given current I the coupling constant

2

0 MI J

is proportional to the moment of inertia JM times the square of the resonance frequency. This allows
comparing stepper motors of different sizes concerning their qualification for stallGuard.

"A stepper motor with a high
2

0MJ is good for stallGuard"

A stepper motor might have higher harmonics. So, the
2

0MJ has to be on the basis of the first

harmonic, the resonance with the highest amplitude.

5.6.3 Why to Take Both, the Torque and the Moment of Inertia in into Account

A high torque itself does not imply a high efficiency. Generally, the torque of stepper motors scales
with their size and the moment of inertia scales with their size.

Application Note: TMC429 & TMC24x Getting Started (V. 1.0 / 2012-FEB-10) 19

Copyright © 2012 TRINAMIC Motion Control GmbH & Co. KG

5.6.4 Competition Based on Torque vs. Speed Diagram

If a torque over speed diagram is available for a stepper motor one can compare stepper motors by

its efficiency, calculating Nm[rad/s]I [A]2 * R[] + Nm[rad/s] for a given angular
velocity.

5.7 Overview of 'tmc429demo'

These routines all together build a simple example application to control the TMC429. One can directly
run it together with a TMC429 evaluation kit. These sources are distributed in the hope that they will
be useful. They might be a base for your own application. The C code has been compiled using MS
Visual C++ 6.0 to build the tmc429demo.exe Win32 console application.

The software runs with evaluation boards TMC428-EVAL, TMC429-EVAL, TMC429+TMC24x-EVAL, and with
TMC429+TMC26x-EVAL. This application note is primarily intended to show how to program the
TMC429 with TMC246/TMC249 drivers in a SPI stepper motor driver chain architecture. Running the
software with with a TMC429+TMC26x-EVAL shows how use the TMC429 for motion control – but for
that board the initialization of the TMC26x is done by the firmware of the board.

rs232win.c : routines to access RS232 under Win32 (Win9x, NT4, Win2k, XP, W7...)

rs232win.h : header file for rs232win.c

tmc429spi.c : SPI routine tmc428spi() - calling tmc429spi4win() for the Win32 application

tmc429spi.h : header file of tmc429spi.c

tmc429spi4win.c : routines to access a TMC429 on evaluation board via RS232 under Win32

tmc429spi4win.h : header file of tmc429spi4win.c

tmc429base.c : basic TMC429 access routines (basic register IO, ...) using tmc429spi.c

tmc429base.h : header file for tmc429_base.c

tmc429misc.c : Miscellaneous routines (dump of internal TMC429 configuration RAM, calculation
of full step frequency from TMC429 parameters, stallGuard demonstration and
stallGuard profiler)

tmc429misc.h : header file for tmc429misc.c

tmc429demo.c : MAIN program demo using routines of 'tmc429spi.c', 'tmc429base.c', ...

tmc429demo.exe : Win32 executable - run this program from console (execute: cmd.exe)

The LSMD is set to 1 (=2 drivers) for the TMC429 evaluation board (TMC429+TMC246-EVAL).

5.8 Overview of 'sample428_236'

This example can be used as a frame for an own micro controller based application. It is written in a
compact form. In contrast to the 'tmc429demo' - where a separate routine is available for each type of
register – the single routine send428() is used to handle directly the communication with the TMC429.
The SPI datagramms are composed directly – supported by a set of macros. This code was written for
the old TMC428-EVAL board.

sample428_236.c : frame for a stand-alone micro controller application

sample428_236.h : header file for sample428_236.c

Application Note: TMC429 & TMC24x Getting Started (V. 1.0 / 2012-FEB-10) 20

Copyright © 2012 TRINAMIC Motion Control GmbH & Co. KG

6 Literature & Links

[Larsson2003] Lars Larsson, Micro Step vs. Full Step – a Quantitative Competition, SAE‘2003 World
Congress, Detroit, Michigan, USA, March 3-6, 2003, SAE Technical Paper Series,
Paper # 2003-01-0093, SAE International, Warrendale, USA, March 2003

[TMC428 – Data Sheet Version 2.02 (last version)]
[TMC428 Evaluation Kit V3.0 (or higher) Manual]

TMC429 Datasheet
TMC429+TMC24X-EVAL, evaluation board manual
TMC429+TMC26X-EVAL, evaluation board manual

TMC236 Datasheet
TMC239 Datasheet
TMC246 Datasheet
TMC249 Datasheet

TMCL – Reference and Programming Manual

Up to date documentation of all TRINAMIC products is available on www.trinamic.com Up to date
documentation of all TRINAMIC products is available on www.trinamic.com

7 Revision history

7.1 Documentation revision

Version Date Author
LL = Dr. Lars Larsson

Description

1.0 2012-FEB-10 LL Initial Version, based on Application Note "TMC428
Getting Started including stallGuard"

Table 1: Documentation Revisions

© 2012 TRINAMIC Motion Control GmbH & Co. KG

Information given in this application note is believed
to be accurate and reliable. However no responsibility
is assumed for the consequences of its use nor for
any infringement of patents or other rights of third
parties which may result from its use.

Specifications are subject to change without notice.

	1 Focus of this Application Note
	2 Table of contents
	3 Introduction
	4 Initialization of the TMC429
	4.1 TMC429 Configuration RAM for TMC236/TMC239/TMC246/TMC249
	4.2 Stepper Motor Global Parameter Register (JDX=%1111)
	4.3 Parameterizing Individual Stepper Motors
	4.3.1 Velocity R[Hz] and Acceleration (R[Hz/s]
	4.3.2 Choosing Micro Step Resolution / Step Pulse Pre-Divider / Acceleration Pre-Divider
	4.3.3 Choosing Step Velocities v_min and v_max and the Step Acceleration a_max
	4.3.4 Calculate p_mul & p_div for a Chosen Set of Parameters
	4.3.5 Set the Reference Switch Configuration and the Ramp Mode
	4.3.6 Set the Automatic Current Scaling [optional]

	4.4 Running a Motor
	4.5 Communication Outline of tmc429demo and sample428_236
	4.6 Reading Driver Chain Status Bits with TMC429
	4.7 How to Get the Driver Chain Status Information – Code Example
	4.8 How to Get the Status Bits of TMC246 / TMC249 – Code Example
	4.9 How to Get the StallGuard Load Indicator (LD) Bits of TMC246 / TMC249

	5 StallGuard (1) Profiler
	5.1 StallGuard Demo – Source Code Example
	5.2 StallGuard Profiler – Source Code Example
	5.3 StallGuard Profiler for continuous motion (VELOCITY MODE)
	5.4 StallGuard Profiler for limited motion range (RAMP_MODE)
	5.5 StallGuard – General Constrains
	5.5.1 Velocity Ranges for Proper Operation of StallGuard
	5.5.2 Mixed-Decay to be set OFF for StallGuard
	5.5.3 Full Step vs. Half Step vs. Micro Step
	5.5.4 Resistances

	5.6 How to Compare Different Motors Concerning StallGuard Qualification
	5.6.1 Comparison by Hand
	5.6.2 Comparison Based on Resonance Frequency
	5.6.3 Why to Take Both, the Torque and the Moment of Inertia in into Account
	5.6.4 Competition Based on Torque vs. Speed Diagram

	5.7 Overview of 'tmc429demo'
	5.8 Overview of 'sample428_236'

	6 Literature & Links
	7 Revision history
	7.1 Documentation revision

