DC Motor Control with TMC4671

Valid for TMC4671

The TMC4671 hardware controller performs Field Oriented Control (FOC) for two-phase stepper motors and for three-phase permanent magnet synchronous motors (PMSM) and it supports DC motor control.

Why TMC4671 for DC motor servo control? The TMC4671 provides hardware closed loop torque control, velocity control, and position control even for DC motors decoupling motor control from application.

Table of Contents

1	DC	MOTOR CLOSED LOOP CONTROL	.1		
	1.1	DC MOTOR CONTROL CONFIGURATION	.1		
2	ТМС	4671 EVALUATION BOARDS FOR APPLICATION NOTE	. 2		
	2.1 2.2	DC MOTOR TURNING SELECT DC MOTOR TYPE	. 2		
3	SET	UP ADC FOR MEASUREMENT OF CURRENT	. 3		
	3.1 3.2 3.3	ADC DELTA SIGMA PARAMETER – INITIAL BASE PARAMETERS PWM ENGINE AND ASSOCIATED MOTOR CONNECTORS DC MOTOR SETUP WITH TMCL-IDE AND ITS WIZARDS - COIL	3 4 6		
4	DIS	CLAIMER	11		
5	REVISION HISTORY11				
6	REFERENCES				

1 DC Motor Closed Loop Control

When using the TMC4671 for closed loop DC motor control, one current controller is used for torque control while the coordinate transformations required for FOC are skipped. Servo control functions as velocity control and position control of DC motors are similar to two-phase stepper motors and three-phase permanent magnet synchronous motors. The TMC4671 hardware provides an ADC engine, an encoder engine, PI controllers for closed loop current control, velocity control, position control, and a PWM engine usable in a unified way for DC motor control.

1.1 DC Motor Control Configuration

The base for torque control of a DC motor enfolds configuration of analog digital converter ADC for current measurement, optional PWM adjustment, and the essential parameterization of P parameter and I parameter of the PI closed loop current controller. DC motor control of the TMC4671 is selected by the dedicated DC motor type control mode.

A proper setup of closed loop current control is essential when using closed loop velocity control. For velocity control, one needs to set up some parameters of the position sensor. The TMC4671 uses a position sensor to measure the speed. A proper setup of closed loop current control together with a proper setup of velocity control is essential when using position control.

The TMC4671 is equipped with integrated limiters to configure save operation area even on faults caused by wrong configuration. These limiters are useful especially during initial setup.

An important fault that might damage a motor or a power supply is a wrong sign of current measurement. With that, the current controller opens the PWM duty cycle up to 100%. With a programmable limiter, one can clip the PWM duty cycle to save operation where the resulting current is limited be the inner resistance of the motor. One the other side, this limiter limits the reachable performance of the motor.

2 TMC4671 Evaluation Boards for Application Note

The evaluation kit used used as exemplary hardware platform configuration for this application note is Landungsbruecke v1.2 + TMC4671-EVAL v.1.1 + TMC-UPS-10A/70V-EVAL v.1.1 + DC Motor resp. a coil with an inductance L = 1 mH and resistance of 1 Ohm with a 24 V power supply. A coil is useful for emulating a blocked DC motor for initial setup of the closed loop current regulation.

2.1 DC Motor Turning

Why initially turn the DC motor open loop? Initial, one needs to turn the motor open loop to check the current measurement for the motor, to check the association between ADC channel selection and DC motor terminals and to adjust the ADC scaling parameter and the ADC offset parameter.

To turn a DC motor open-loop one just needs to apply a supply voltage VM to the DC motor. Together with PWM the effective voltage U applied to the motor is U = Vm * PWMdutyCycle[%]. For DC motor mode, the PWM duty cycle of the TMC4671 is programmed via UQ_EXT value of register UQ_UD_EXT where the UQ_EXT is a 16 bit signed value with the sign representing the sign of the effective voltage applied to the motor. The Upwm[V] = VM[V] * UQ_EXT[-32767, ..., 0, ..., +32767] is the effective voltage between the terminals of the PWM power stage.

2.2 Select DC Motor Type

Choose Motor Type = 0 for DC motor control. The PWM is choppering even in Motor Type = 0 mode but with zero effective coil voltage between terminals. This is to support boot-strapping charge pump of gate drivers.

Choose Motor Type = 1 for DC motor with number of pole pairs NPP = 1. The number of pole pairs is not relevant for DC motor control but with that, electrical angles are same as mechanical angels when measuring angles with encoders. The motor type = 0 configures the PWM assigning the terminals U and V for the DC motor (Figure 3.1).

- 0 : no motor (PWM choppers in zero voltage mode)
- 1 : DC motor
- 2 : two-phase permanent magnet synchronous motor (stepper motor)
- 3 : three-phase permanent magnet synchronous motor (PMSM, brushless motor)

2.2.1 DC Motor Turning – Open Loop for Current Measurement Setup

For open loop motor turning one applies PWM with a programmed duty cycle for the two half bridges with the DC motor connected between the terminals U and V. The supply voltage together with the PWM duty cycle determines the speed of motor.

For FOC2 and FOC3 the UD_EXT is used to turn the motor open loop to determine the D direction of the current. In contrast to FOC3 and FOC2, for the DC motor - named FOC1 because the motor mechanically make FOC by its mechanical commutator brushes - the UQ_EXT is used turn the DC motor because the current through the DC motor generates torque similar to the torque generating current IQ in case of FOC2 and FOC3.

2.2.2 DC Motor Turning - Closed Loop with PI Regulator

For closed loop current control, a PI regulator controls the current by measuring the actual current and regulating the difference to the desired target current to zero. Initial, the P and I parameter of the PI regulator should be set to zero.

First, the P parameter should be incremented with temporarily set I = 0 during determination of P parameter until the PI regulator reaches half of the desired target current. With a determined P parameter, the parameter I should be incremented until the PI regulator reaches the full desired target current. With that, one has an initial setup for the current regulation. The magnitude of the parameter I determines how fast the PI current regulator reaches the desired target current. A too large parameter I causes control loop oscillations.

A good initial choice of I parameter for PI current controller setup is an I parameter that results in 1/8 of current change in time dI₁/dt comparted to the current change in time dI₁/dt = U_L/L of the inductance L of the motor while the P is temporarily set to 0 for determination of I parameter. To give an example: At t=0, a coil with L = 1 mH, and supply voltage 24V gives a dI_L/dt = 24000A/s. If a TMC4671 with TMC-UPS-10A/70V power stage and 24V supply voltage gives and current changes in time of 3A/s for I=1 one could initially set I = 1/8 * 24000A/3A = 1000.

3 Setup ADC for Measurement of Current

The TMC4671 supports two parallel sampling ADC channels for motor current measurement. For DC motor current measurement, the first channel ADC_I0_RAW is associated to measure the current of the DC motor. Some base ADC parameter need to be initialized.

3.1 ADC Delta Sigma Parameter – Initial Base Parameters

The TMC4671 is equipped with internal Delta Sigma ADCs. The Delta Sigma ADC of the TMC4671 provide programmable filtering of input signals to adjust resolution vs. speed. The Delta Sigma ADCs are organized in two groups to enable different resolutions and speeds for these groups. The group A is for primarily for current measurement. The group B is primarily for processing of analog encoder signals. The the following default settings fit for most standard applications and are useful as initial parameter settings. Those settings are initialized by the TMCL-IDE Wizzard by Clicking on Default Settings.

ADDR	Address Name	Data	Function
0x04	dsADC_MCFG_B_MCFG_A	0x00130013	ADC configuration group B and A
0x05	MCLK_A	0x2000000	Delta Sigma Clock A
0x06	MCLK_B	0x00000000	Delta Sigma Clock B off
0x07	dsADC_MDEC_B_MDEC_A	0x01000100	Deciamtion for B & A
0x0A	ADC_I_SELECT	0x14000300	Select ADC channel for DC motor
0x1B	MOTOR_TYPE_N_POLE_PAIRS	0x00010001	DC motor type, number of pole pairs
0x24	UQ_UD_EXT	0x0000000	UQ_EXT for PWM duty cycle, 1 st zero
0x63	MODE_RAMP_MODE_MOTION	0x0000008	classical PID type, UQ_UD_EXT mode

3.1.1 Adjust ADC Offsets and ADC Scaling and Sign

The integrated ADCs deliver unsigned raw ADC values (ADC_RAW) within the 16 bit unsigned range 0 ... 65535. The PI current controller needs scaled and offset corrected signed ADC values within the 16 bit signed range of -32767 ... +32767 to perform closed loop current control. Similar to FOC2 and FOC3, it is essential to set correct ADC scale parameter, and correct ADC offset parameter for real time correction by the integrated ADC scaler and ADC offset compensator.

Closed loop current control of DC motor needs correct association between applied voltage and measured current. For positive voltage UQ, a positive current IQ needs to be measured. For negative voltage -IQ, a negative current –IQ needs to be measured.

3.1.1.1 Measure Zero Current to Determine ADC and Sense Amplifier Offset

First, one needs to measure the zero current to determine the offset of ADC and sense amplifier.

ADDR	Address Name	Data	Function
0x1A	PWM_SV_CHOP	0x0000000	Switch PMW_OFF (zero voltage)
0x03	ADC_RAW_ADDR	0x0000000	Set ADC RAW address to read ADC_I0_RAW
0x02	ADC_RAW_DATA	ADC raw data	Read actual ADC raw data
0x1A	PWM_SV_CHOP	0x0000007	Switch PMW_ON

3.2 PWM Engine and associated Motor Connectors

The PWM engine of the TMC4671 has eight gate control outputs to control up to four power MOS half bridges. For three-phase motors tree half bridges are used (U, V, W). For two-phase stepper motors four half bridges are used for (U, V, W, Y). For DC motor control, the first two half bridges (U, V) are used.

Gate Control Signals	Three-Phase-Motor : 3	Two-Phase-Motor : 2	DC Motor : 1
PWM_UX1_H	11	V1	Ш
PWM_UX1_L	0	×1	0
PWM_VX2_H	V	٧٥	V
PWM_VX2_L	v	ΛΔ	V
PWM_WY1_H	10/	V1	
PWM_WY1_L	00	Τ⊥	-
PWM_Y2_H		VD	
PWM_Y2_L	_	TZ TZ	-

For the DC motor current control (here named FOC1), the number of pole pairs is not relevant – in contrast to closed loop current control of two-phase stepper motors (FOC2) and three-phase permanent magnet motors (FOC3) – it should be set to 1 to equal mechanical angle and electrical angle for velocity control and for position control.

Figure 3.1 DC Motor Connection to TMC4671

3.3 DC Motor Setup with TMCL-IDE and its Wizards - Coil

3.3.1 Select TMC4671

👗 TMCL-IDE 3.0				_	σ	×
Ele Tools Options Views Help						
1		You		-		-
		(iii)	. ₹ ₹	🖬 Lā	1	
Connected devices ×						
Device						
✓ + US8						
COM3: USB port	Landungsbruecke: COM3-Id 1					
👻 📥 101: Landungsbruecke (V 3.03)	Board Assignment Settings					
Direct mode	Automated board detection					
 Motion controller IC 						
 TMC4671 	Push scan for automated detection or connected boards. Please keep the evaluation board himmware up to date.					
Register browser						
Datagram mode	Scan					
✓ Axis0						
V Settings	Manual board assignment					
111 Selectors	Salest connected however manually. This is only recommanded if systemated dataction fails comahour. Dates leave the sush stice however firmulate					
111 Pi control	up to date. Choosing a wrong combination may lead to unexpected behaviour.					
✓ Control mode						
111 Torque mode						
111 Velocity mode	Motion controller Driver					
11 Position mode	Inducti Calita Ciles al Inde					
 Info graph and display 						
Torque graph	TMC4671 • none •					
Velocity graph						
Position graph						
Ram debug	Diagnostics					
IC scope	We've got following hints for you:					
Parameter display	In the age constraints burge. Please wait for board to finish jobs. Information Motor Supply: 23.07 Board at childhown Controller: TAC4671 Board at childhown Controller: TAC4671 Board at childhown Divery: noise					
		003.0	mdelene	MEM- 00 7/	8 KB [CT	11.2.04

3.3.2 Start TMCL-IDE Wizard – Click the Weasel

3.3.3 TMCL-IDE Wizard – Introduction

3.3.4 TMCL-IDE Wizard – Main Settings – Set Defaults for DC Motor

Name transmission Notation of NMA configuration Notation of NMA configuration <th <="" colspan="2" th=""><th colspan="7">COM3/USB/d1/Landungsbruecke/TMC-XML/TMC4671 [M1] Weasel configurator wizard (TMC4671) (2/12)</th></th>	<th colspan="7">COM3/USB/d1/Landungsbruecke/TMC-XML/TMC4671 [M1] Weasel configurator wizard (TMC4671) (2/12)</th>		COM3/USB/d1/Landungsbruecke/TMC-XML/TMC4671 [M1] Weasel configurator wizard (TMC4671) (2/12)						
Type of motors & PMA (configuration Met Name Value 0x1 MODIL_PMIS 1 0x1 MODIL_PMIS 1 1 0x1 MODIL_PMIS 1 1 0x1 MODIL_PMIS 1 1 1 0x1 MODIL_PMIS 1	Main settings								
Ar Name Value 0x1 MV20LEPAIRE Intel MV20LEPAIRE <									
Image: Bit State 1	ult values with the respective buttons.								
Image: how concert Image: ho	datermine this value from your motor's								
Ort PMAL_POLARTINEST polarity of Low Side (LS) gate control signal Ort PMAL_POLARTINEST polarity of registration of the side (S) gate control signal Ort PMAL_POLARTINEST polarity of registration of the side (S) gate control signal Ort PMAL_POLARTINEST polarity of registration of the side (S) gate control signal Ort PMAL_POLARTINEST polarity of registration of the side (S) gate control signal Ort PMAL_POLARTINEST polarity of registration of the side (S) gate control signal Ort PMAL_POLARTINEST polarity of registration of the side (S) gate control signal Ort PMAL_SOL polarity of registration of the side (S) gate control signal Ort PMAL_SOL polarity of registration of the side (S) gate control signal Ort PMAL_SOL polarity of registration of the side (S) gate control signal Ort PMAL_SOL polarity of registration of the side (S) gate control signal Ort PMAL_SOL polarity of registration of the side (S) gate control signal Ort PMAL_SOL polarity of registration of the side (S) gate control signal Ort PMAL_SOL polarity of registration of the side (S) gate control signal Ort PMAL_SOL <td< th=""><th></th></td<>									
Image: Control (Control) point processing in processing and processing of the processing o									
0:AA PMA_CHOP Intertend PMMA for FOC 0:AB PMA_CHOP Is See "W_LMADDIT (ball) to come interple reports)". 0:AB PMA_MADDIT 3000 F 0:AB 3000 F 3	switch.								
Chrift POML_SMU_L 3990 E Chrift POML_SMU_L 3990 E Chrift POML_SMU_L 300 E Chrift Statistics for those statis for those statisting for those statisting for those statistics f									
Data PANA_MARKANT 2007 E Data PANA_MARKANT 3007 E PANA_BONA_L 3.2 3.2 PANA_BONA_H 3.2 3.2									
On 9 PANAL, BANA, L. 3 East defaults for DC moto: East defaults for DC moto: East defaults for DC Moto: PANAL BEIL									
Ording Prival_Babu_H 1 D Insert to TMCL/PC host									
Toport to TMCL/IC hort									
Hintre: +Settinge: +Settinge: +ADE config: ·	$\odot \bigcirc$								

Set Number of Pole Pairs = 1 for possible later use of encoders.

C003/US/001/Landongsbruckkor/IMC/2001/IMC6071 (M1) C002000000 C003/US/001/Landongsbruckkor/IMC/2001 (M1) C00200000000000 C003/US/001/Landongsbruckkor/IMC/2001 (M1) C002000000000000 C003/US/001/Landongsbruckkor/IMC/2001 (M1) C002000000000000 C003/US/001/Landongsbruckkor/IMC/2001 (M1) C002000000000000 C003/US/001/Landongsbruckkor/IMC/2001 (M1) C002000000000000 C003/US/001/Landongsbruckkor/IMC/2001 (M1) C00200000000000 C003/US/001/Landongsbruckkor/IMC/2001 (M1) C0020000000000 C003/US/001/Landongsbruckkor/IMC/2001 (M1) C002000000000 C003/US/001/Landongsbruckkor/IMC/2001 (M1) C002000000000 C002000000000000 C0020000000000	🖉 Wizard			-						
Option of the first state of the st	•	COM3/USB/id1/Landung	sbruecke/TMC-XML/TMC46	1 [M1] Weasel configurator wizard (TMC4671) (3/12)						
Open logo comparison Description Image: Intermediate in the second of the second		Open Loop settings								
Area Value Lock Means Value Lock Medic Status The Specific Status Lock Medic Status The Specific Status Lock Medic Status The Specific Status The Specific Status Lock Medic Status The Specific Status The Specific Status The Specific Status Lock Medic Status The Specific Statu		Open loop co	onfiguration	Description						
 PALL_SLACTION PALL_SLA	Adr	Name	Value	Running the motor with Open Loop Control allows further configuration. For Open Loop mode, the motor should be decoupled from any load or the load should be as low as possible.						
NOOE_MOTION Insect and and the check part of the moles of the decay part of the moles o	0x52	PHI_E_SELECTION	phi_e_openloop	1. You can enable Open Loop mode by choosing the commutation angle source (PHL_SELECTON, MoS2) and the context MOTION_MODE (MoS3). 2. Enter a transt whole in roy more fit the context and a value for the acceleration in transf. "Viscal values are a 2 rans (A Stat) and 120 rans/s.						
Index_BAMP Baseled and the processing of the very low book topic velocities and high currents. Try raying these parameters. Index_BAMP Baseled and the processing of the very low book topic velocities and high currents. Try raying these parameters. Index_BAMP Baseled and the processing of the very low topic velocities and high currents. Try raying these parameters. Index_BAMP Baseled and the processing of the very low topic velocities and high currents. Try raying these parameters. Index_BAMP Baseled and the processing of the very low topic velocities and high currents. Try raying these parameters. Index_BAMP Baseled and the processing of the very low topic velocities and high currents. Try raying these parameters. Index_BAMP Baseled and the topic register Coll (def. 1) Index the open loop model Index_BAMP Open loop Phildrecton. Index the open loop of the velocities. Index the open loop Phildrecton. Index_BAMP Index the open loop Phildrecton. Index_BAMP Index the open loop Phildrecton. Index_BAMP Index the open loop Phildrecton. Index the open loop Phildrecton. Indext the open loop Phildrecton. Indext the open loop		MODE_MOTION	uq_ud_ext	3. Now we are at the critical point. Watch the motor currents with the current probe measurement if available, increase UD, EXT in small steps until the motor is running. If you increase UD, EXT, also the current amplitude will rise. If you increase UD, EXT is much year high uncreases in the motor and you might domage your power stage and/or your motor.						
One is MOOD_FF Head to use the open loop mode? MOOD_FF Mood_FP Bailed I Mood_FP Mood_FP Bailed I Mood_FF Bailed I Status I Mood_FF Bailed I Status I Status I Mood_FF Bailed I Status Status I Status I Status I		MODE_RAMP	no velocity ramping	HITT: Some Motors start spinning only at very low target velocities and high currents. Try varying these parameters.						
Model_Peg_3MMs OP Model_Peg_3MMs OP<	0x63	MODE_FF	disabled	How to use the open loop mode?						
MODE_PD_71PE Bandlet Directions 0x1 UL_EXT 1 0x2 0FMLOOD_PLUE Cold 10(1) 0x3 0FMLOOD_PLUE Cold 10(1) 0x3 0FMLOOD_PLUE Cold 10(1) 0x4 UL_EXT 0 Bandlet Directions 0x3 0FMLOOD_PLUE Cold 10(1) 0x4 UL_EXT 0 Bandlet Directions 0x3 0FMLOOD_PLUE Cold 10(1) 0x4 0x4 <th></th> <th>MODE_PID_SMPL</th> <th>0</th> <th>To start the mater in open loop mode do the following:</th>		MODE_PID_SMPL	0	To start the mater in open loop mode do the following:						
0x4 Up_Ext 15 0x4 16 16		MODE_PID_TYPE	Parallel PI architecture	 select the plit gent log mode in register 0x32 (def 1) select us und est mode select the first gent def 4.8 						
Up_ECT 0 Ord OPENDOP_HLDIRTCONC Open Log PH_DDIRTCONC Open Log Ph directonc 0x3 OPENLOOP_VELOCITY_TANGET 0x3 OPENLOOP_VELOCITY_TANGET 0x4 Ph directonc 0x5 OPENLOOP_VELOCITY_TANGET 0x6 OPENLOOP_VELOCITY_TANGET 0x7 OPENLOOP_VELOCITY_TANGET 0x8 Mortout_INPE 0x8 DepenLoop MLCOCITY_CACTUAL 0x8 DepenLop MLCOCITY_CACTUAL	0x24	UD_EXT	1	3. select the used prom amplifier in register 0.024 (def. 10), EXT=0) 4. set at acceleration in register 0.024 (def. 10), EXT=0 (register 0.021 (def30 (rom))						
Image: Control Open Book production Open Book productin Open Book production		UQ_EXT	0	You can also click "Set defaults" to set the default values and start the motor. Afterwards, you can use the control box to set new target velocities.						
box 00FNN.006_ACCCLURATION 0.03 40 box 00FNN.006_ACCCLURATION 42 box 00FNN.006_ACCCLURATION 42 box 00FNN.006_ACCCLURATION 44 box 00FNN.006_ACCCLURATION 0.03 box 00FNN.006_ACCCLURATION 0.03 box 00FNN.006_ACCCLURATION 44	0x1F	OPENLOOP_PHI_DIRECTION	Open loop phi direction.							
Image: Construction Image: Construction	0x20	OPENLOOP_ACCELERATION	60							
0x1 MCCUL_PNE Segle plass DC motor -44 0x1C PRIL_E.X7 0 -44 -48 -44 -44 -102 - - -104 - - -104 - - -104 - - -104 - - -104 - - -104 - - -104 - - -104 - - -104 - - -104 - - -104 - - -104 - - -105 - - -106 - - -107 - - - -108 - - - -109 - - -	0x21	OPENLOOP_VELOCITY_TARGET	-10	42 -						
Molified_Inter Bit Bigs to BMC/02 VECOTY_TARGET 0 Choice Print_E_EXT 0 Bit	0x1B	N_POLE_PAIRS]'i	9.4						
0 0			single phase DC motor	- 4.6 - OPENLOOP_VELOCITY_ACTUAL						
		D Export to T	MCL/PC host	-9.8 -						
-102 - -102 - -104 - -106 - -108 - -110 -		all colore to the								
-102 - -104 - -106 - -108 - -109 - -110 - -110 - -110 -										
-104 -106 -108 -110				- 1.0.2						
10.6 - 10.8 - 11.0				-10.4 -						
18.8 - 11.0 -				-10.6 -						
-11.0 - OPENLOOP VELOCITY, TARGET				-10.8						
OPENLOOP_VELOCITY_TARGET				-11.0 L						
OPPRIOD-PEDCHT_INGE										
Sneak UD EXT up to 4000:				Snek UD EXTUDIT 4000:						
For higher values edit register directly				A For higher values edit register directly						
How to estimate the motor pole pair count?				How to estimate the motor pole pair count?						
For an estimation of the motor pole pair count of your motor, the motor must be rotated with a controlled commutation angle, a defined force, and no load.				For an estimation of the motor pole pair count of your motor, the motor must be rotated with a controlled commutation angle, a defined force, and no load.						
 select a slow velocity in register to21 c (s_i = 1 / [cm]) and start the motion in controlled mode with the actual open loop settings clear the extrander setural tar control position within a seture for memoham 				 select a slow velocity in register 022 (e.g1 (pm)) and start the motor in controlled mode with the actual open loop settings clear the estimated result at motor position which is easy to remember 						
3. read the estimated number of motor poles after exactly one revolution and update register tocitil				 read the estimated number of motor poles after exectly one revolution and update register fxtB 						
Estimated motor pole pairs II Caracounter				Estimated motor pole pairs: 8 Clear counter						
			Flat							

3.3.5 TMCL-IDE Wizard - Open Loop Settings

Use UQ_EXT to set the PWM duty cycle for the DC motor to run it open loop. Start with small values. The range of UQ_EXT is -32767, ..., 0,..., +32767 associated with PWM duty cycle -100%, ..., 0%, ..., +100% where -100% stands for negative supply voltage and +100% stands for positive supply voltage.

For initial ADC setup set UQ_EXT = 0 and use a coil with inductance L[mH] resistance R[Ohm] according to your DC motor or block your DC motor that it does not turn. With that, one can set up the current measurement and the PI closed loop current control.

3.3.6 TMCL-IDE Wizard – ADC Selection

Set ADC_I0_SELECT = ADC_SD_I0_RAW, set ADC_I_UX = UX, and load Sigma Delta Defaults.

3.3.7 TMCL-IDE Wizard – ADC Configuration

Set ADC_I0_OFFSET for ADC_I0_SCALED.

3.3.8 TMCL-IDE Wizard – ADC Configuration – Check Current Scaling

Set UQ_EXT = 1000 and UQ_EXT = -1000 and observe ADC_I0_SCALED and check for correct sign. The sign is correct if a positive voltage UQ_EXT causes a positive current ADC_I0_SCALED.

3.3.9 TMCL-IDE Wizard – Encoder Test Drive (Torque Mode)

Set Defaults and Start. Toggle PID_TARGET -500 and +500. Then switch PWM = OFF and disconnect the coil respectably the blocked DC motor and connect the DC motor. Increase the absolute value of PID_TARGET if the target current is too low to turn your DC motor.

To turn a DC motor in torque mode, there is no need for an encoder. To turn DC motor in velocity mode or in position mode, an encoder is required. For a DC motor, the encoder setup is easier compared to the encoder setup for the FOC.

4 Disclaimer

TRINAMIC Motion Control GmbH & Co. KG does not authorize or warrant any of its products for use in life support systems, without the specific written consent of TRINAMIC Motion Control GmbH & Co. KG. Life support systems are equipment intended to support or sustain life, and whose failure to perform, when properly used in accordance with instructions provided, can be reasonably expected to result in personal injury or death.

Information given in this application note is believed to be accurate and reliable. However, no responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties, which may result from its use.

Specifications are subject to change without notice.

All trademarks used are property of their respective owners.

5 Revision History

Document Revision

Version	Date	Author	Description
0.99	2018-MAR-15	LL	Initial version
	2018-MAR-19	LL	steps to setup DC motor current added; re-structured,
			TMCL-IDE screen shots added;
	2018-MAR-29	LL	First draft version finalized;

6 References

TMC4671 datasheet, www.trinamic.com